Vol. 146

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-04-29

Reduction of Radar Cross Section Based on a Metasurface

By Jie Chen, Qiang Cheng, Jie Zhao, Di Sha Dong, and Tie-Jun Cui
Progress In Electromagnetics Research, Vol. 146, 71-76, 2014
doi:10.2528/PIER14022606

Abstract

A metasurface for Radar Cross Section (RCS) reduction is proposed. The surface is composed of the same type of metamaterial units with different geometric dimensions, leading to various reflection phases under the incidence of plane waves. By carefully choosing the phase distributions, diffusion will be produced for the reflected waves which may redistribute the scattering energy from the surface toward all the directions, and hence it can be applied as the coating of metallic targets with ultra-low RCS. Both the simulated and experimental results have validated the proposed method.

Citation


Jie Chen, Qiang Cheng, Jie Zhao, Di Sha Dong, and Tie-Jun Cui, "Reduction of Radar Cross Section Based on a Metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
doi:10.2528/PIER14022606
http://jpier.org/PIER/pier.php?paper=14022606

References


    1. Pendry, J., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
    doi:10.1103/PhysRevLett.76.4773

    2. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075, 1999.
    doi:10.1109/22.798002

    3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
    doi:10.1126/science.1058847

    4. Smith, D., J. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
    doi:10.1126/science.1096796

    5. Pendry, J., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.
    doi:10.1126/science.1104467

    6. Soukoulis, C. M., "Physics: Negative refractive index at optical," Science, Vol. 1136481, No. 47, 315, 2007.

    7. Smith, D., S. Schultz, P. Marko·s, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from re°ection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
    doi:10.1103/PhysRevB.65.195104

    8. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Applied Physics Letters, Vol. 95, No. 9, 094107-1-094107-3, 2009.

    9. Schurig, D., J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    10. Liu, R., C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
    doi:10.1126/science.1166949

    11. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, Vol. 8, No. 7, 568-571, 2009.
    doi:10.1038/nmat2461

    12. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, No. 5976, 337-339, 2010.
    doi:10.1126/science.1186351

    13. Gomory, F., M. Solovyov, J. ·Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, No. 6075, 1466-1468, 2012.
    doi:10.1126/science.1218316

    14. Wood, B., J. Pendry, and D. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Physical Review B, Vol. 74, No. 11, 115116, 2006.
    doi:10.1103/PhysRevB.74.115116

    15. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
    doi:10.1126/science.1108759

    16. Lu, Z., C. Chen, C. A. Schuetz, S. Shi, J. A. Murakowski, G. J. Schneider, and D. W. Prather, "Subwavelength imaging by a °at cylindrical lens using optimized negative refraction," Applied Physics Letters, Vol. 87, No. 9, 091907-091907-3, 2005.
    doi:10.1063/1.2035317

    17. Paquay, M., J.-C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, 2007.
    doi:10.1109/TAP.2007.910306

    18. Iriarte, J.-C., M. Paquay, I. Ederra, R. Gonzalo, and P. de Maagt, "Combination of AMC and PEC cells for RCS applications," 2007 IEEE Antennas and Propagation Society International Symposium, 865-868, 2007.
    doi:10.1109/APS.2007.4395631

    19. De Cos, M. E., Y. Alvarez-Lopez, and F. Las Heras Andres, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
    doi:10.2528/PIER10060402

    20. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
    doi:10.2528/PIERB07120803

    21. Pouliguen, P., R. Hemon, C. Bourlier, J.-F. Damiens, and J. Saillard, "Analytical formulae for radar cross section of °at plates in near field and normal incidence," Progress In Electromagnetics Research B, Vol. 9, 263-279, 2008.
    doi:10.2528/PIERB08081902

    22. Alexopoulos, A., "Effect of atmospheric propagation in RCS predictions," Progress In Electromagnetics Research, Vol. 101, 277-290, 2010.
    doi:10.2528/PIER09121509

    23. N.-J., Li, C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.

    24. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
    doi:10.2528/PIER08010206

    25. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
    doi:10.2528/PIERB07121107

    26. Landy, N., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    27. Wang, B., T. Koschny, and . M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Physical Review B, Vol. 80, No. 3, 33108, 2009.
    doi:10.1103/PhysRevB.80.033108

    28. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,", arXiv preprint arXiv:0803.1646, Vol. 16, No. 10, 7181-7188, 2008.

    29. Xu, H.-X., G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, "Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber," Physical Review B, Vol. 86, No. 20, 205104, 2012.
    doi:10.1103/PhysRevB.86.205104

    30. Watts, C., X. Liu, and W. Padilla, "Metamaterial electromagnetic wave absorbers," Advanced Materials, Vol. 24, No. 23, OP98-OP120, 2012.

    31. Yang, X. M., X. Y. Zhou, Q. Cheng, H. F. Ma, and T. J. Cui, "Diffuse reflections by randomly gradient index metamaterials," Optics Letters, Vol. 35, No. 6, 808-810, 2010.
    doi:10.1364/OL.35.000808

    32. Zhang, Y., R. Mittra, B.-Z. Wang, and N.-T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.
    doi:10.1049/el.2009.3161

    33. Iriarte, J. C., et al., "RCS reduction in a chessboard-like structure using AMC cells," Proceedings EUCAP 2007, 1-4, Nov. 11-16, 2007.

    34. Li, H., B.-Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
    doi:10.1163/156939307783239528