Vol. 145

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-04-02

An Improved Quality Guided Phase Unwrapping Method and its Applications to MRI

By Yu-Dong Zhang, Shuihua Wang, Genlin Ji, and Zhengchao Dong
Progress In Electromagnetics Research, Vol. 145, 273-286, 2014
doi:10.2528/PIER14021005

Abstract

An improved method of quality guided phase unwrapping (QGPU) is proposed in this work. It extracts the quality map via a median filtered phase derivative variance (MFPDV) that applies a twodimensional median filter on the phase derivative variance (PDV) map, in order to reduce the effect of noise in the background area. In addition, we employed the Indexed Interwoven Linked List (I2L2) structure to store the orderly adjoin list more efficiently and the Two Section Guided Strategy (TSGS) to reduce comparison frequency. The experiments demonstrate that the normalized L1 norm of MFPDV of a brain MR image is only 0.0827, less than that of PDV method at 0.0923. Besides, the computation time of QGPU with I2L2 technique is only 30% of that with sequence structure, and the computation time of QGPU with TSGS is only 65% of that without TSGS. In total, the proposed MFPDV upwrap phase images better than conventional PDV map, and I2L2 and TSGS are efficient strategies to reduce computation time.

Citation


Yu-Dong Zhang, Shuihua Wang, Genlin Ji, and Zhengchao Dong, "An Improved Quality Guided Phase Unwrapping Method and its Applications to MRI," Progress In Electromagnetics Research, Vol. 145, 273-286, 2014.
doi:10.2528/PIER14021005
http://jpier.org/PIER/pier.php?paper=14021005

References


    1. Zhang, Y., S. Wang, and Z. Dong, "Classification of alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree," Progress In Electromagnetics Research, Vol. 144, 171-184, 2014.
    doi:10.2528/PIER13121310

    2. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
    doi:10.2528/PIER09041905

    3. Chin, L., et al., "En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography," Journal of Biomedical Optics, Vol. 18, No. 6, 066005, 2013.
    doi:10.1117/1.JBO.18.6.066005

    4. Ma, S., et al., "Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry," Optics and Lasers in Engineering, Vol. 50, No. 8, 1107-1118, 2012.
    doi:10.1016/j.optlaseng.2012.01.021

    5. Huang, H. and Q. Wang, "A method of filtering and unwrapping SAR interferometric phase based on nonlinear phase model," Progress In Electromagnetics Research, Vol. 144, 67-78, 2014.
    doi:10.2528/PIER13080806

    6. Fang, S., et al., "Quality-guided phase unwrapping algorithm based on reliability evaluation," Appl. Opt., Vol. 50, No. 28, 5446-5452, 2011.
    doi:10.1364/AO.50.005446

    7. Egidi, N. and P. Maponi, "A comparative study of two fast phase unwrapping algorithms," Applied Mathematics and Computation, Vol. 148, No. 3, 599-629, 2004.
    doi:10.1016/S0096-3003(02)00920-7

    8. Qian, K., S. H. Soon, and A. Asundi, "A simple phase unwrapping approach based on filtering by windowed Fourier transform," Optics & Laser Technology, Vol. 37, No. 6, 458-462, 2005.
    doi:10.1016/j.optlastec.2004.07.007

    9. Zhao, M., et al., "Quality-guided phase unwrapping technique: Comparison of quality maps and guiding strategies," Appl. Opt., Vol. 50, No. 33, 6214-6224, 2011.
    doi:10.1364/AO.50.006214

    10. Zhang, S., X. Li, and S. T. Yau, "Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction," Appl. Opt., Vol. 46, No. 1, 50-57, 2007.
    doi:10.1364/AO.46.000050

    11. Lu, Y. G. and X. P. Zhang, "Minimum L0-norm two dimensional phase unwrapping algorithm based on the derivative variance correlation map," Journal of Physics: Conference Series, Vol. 48, 308-312, 2006.
    doi:10.1088/1742-6596/48/1/057

    12. Zhou, K., M. Zaitsev, and S. Bao, "Reliable two-dimensional phase unwrapping method using region growing and local linear estimation," Magn. Reson. Med., Vol. 62, No. 4, 1085-1090, 2009.
    doi:10.1002/mrm.22074

    13. Kemao, Q., W. Gao, and H. Wang, "Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm," Appl. Opt., Vol. 47, No. 29, 5420-5428, 2008.
    doi:10.1364/AO.47.005408

    14. Herraez, M. A., et al., "Agglomerative clustering-based approach for two-dimensional phase unwrapping," Appl. Opt., Vol. 44, No. 7, 1129-1140, 2005.
    doi:10.1364/AO.44.001129

    15. Lu, Y., et al., "Weighted-phase-gradient-based quality maps for two-dimensional quality-guided phase unwrapping," Optics and Lasers in Engineering, Vol. 50, No. 10, 1397-1404, 2012.
    doi:10.1016/j.optlaseng.2012.05.011

    16. Wang, H., et al., "A three-dimensional quality-guided phase unwrapping method for MR elastography," Phys. Med. Biol., Vol. 56, No. 13, 3935-3952, 2011.
    doi:10.1088/0031-9155/56/13/012

    17. Liu, S., et al., "Complex-amplitude-based phase unwrapping method for digital holographic microscopy ," Optics and Lasers in Engineering, Vol. 50, No. 3, 322-327, 2012.
    doi:10.1016/j.optlaseng.2011.11.006

    18. Spottiswoode, B. S., et al., "Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting," IEEE Trans. Med. Imaging, Vol. 26, No. 1, 15-30, 2007.
    doi:10.1109/TMI.2006.884215

    19. Strand, J. and T. Taxt, "Performance evaluation of two-dimensional phase unwrapping algorithms," Appl. Opt., Vol. 38, No. 20, 4333-4344, 1999.
    doi:10.1364/AO.38.004333

    20. Zhang, K., et al., "Phase unwrapping for very large interferometric data sets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 4048-4061, 2011.
    doi:10.1109/TGRS.2011.2130530

    21. Zhang, Y., et al., "A hybrid method for MRI brain image classification," Expert Systems with Applications, Vol. 38, No. 8, 10049-10053, 2011.
    doi:10.1016/j.eswa.2011.02.012

    22. Zhang, Y., et al., "A two-level iterative reconstruction method for compressed sensing MRI," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1081-1091, 2011.
    doi:10.1163/156939311795762024

    23. Nordin, L. E., et al., "Cortical responses to amphetamine exposure studied by pCASL MRI and pharmacokinetic/pharmacodynamic dose modeling," NeuroImage, Vol. 68, 75-82, 2013.
    doi:10.1016/j.neuroimage.2012.11.035

    24. Schaap, K., et al., "Inventory of MRI applications and workers exposed to MRI-related electromagnetic fields in the Netherlands," European Journal of Radiology, Vol. 82, No. 12, 2279-2285, 2013.
    doi:10.1016/j.ejrad.2013.07.023

    25. Kruger, D., et al., "Neural correlates of control operations in inverse priming with relevant and irrelevant masks," NeuroImage, Vol. 64, 197-208, 2013.
    doi:10.1016/j.neuroimage.2012.09.018

    26. Zhang, Y. and L. Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.
    doi:10.2528/PIER12061410

    27. Zhang, Y., L. Wu, and S. Wang, "Magnetic resonance brain image classification by an improved tificial bee colony algorithm," Progress In Electromagnetics Research, Vol. 116, 65-79, 2011.

    28. Viotti, , M. R., et al., "Processing of noised residual stress phase maps by using a 3D phase unwrapping algorithm," Optics and Lasers in Engineering, Vol. 51, No. 7, 890-897, 2013.
    doi:10.1016/j.optlaseng.2013.02.008