Vol. 143
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-10-29
Three-Dimensional Thermal Cloak with Homogeneous and Nonsingular Conductive Materials
By
Progress In Electromagnetics Research, Vol. 143, 131-141, 2013
Abstract
Most three-dimensional omnidirectional cloaks proposed to date (using optics, electromagnetics, and acoustics) are not easily realized, as they possess inhomogeneous and singular parameters imposed by the transformation-optic method. In this study, we theoretically demonstrate that a thermodynamic spherical cloak with homogeneous and finite conductivity and employing only naturally available conductive materials may be achieved. More interestingly, the thermal localization inside the coating layer can be tuned by anisotropy, which may lead to nearly perfect functionality in an incomplete cloak. The practical realization of such a homogeneous thermal cloak by using two naturally occurring materials has been suggested, which provides an unprecedentedly plausible way to flexibly achieve a thermal cloak and manipulate heat flow. Numerical experiments validate the excellent performance of the proposed homogeneous cloak functions.
Citation
Tiancheng Han, and Zheng-Mao Wu, "Three-Dimensional Thermal Cloak with Homogeneous and Nonsingular Conductive Materials," Progress In Electromagnetics Research, Vol. 143, 131-141, 2013.
doi:10.2528/PIER13090601
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U., "Science," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

4. Kante, B., D. Germain, and A. Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, 201104, 2009.
doi:10.1103/PhysRevB.80.201104

5. Han, T. C., X. H. Tang, and F. Xiao, "The petal-shaped cloak," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14--15, 2055-2062, 2009.
doi:10.1163/156939309789932511

6. Han, T. C., C.-W. Qiu, and X. H. Tang, "Creating rigorous open cloaks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1839-1847, 2010.

7. Cummer, S. A., R. P. Liu, and T. J. Cui, "A rigorous and nonsingular two dimensional cloaking coordinate transformation," J. of Appl. Phys., Vol. 105, 056102, 2009.
doi:10.1063/1.3080155

8. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

9. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.
doi:10.1126/science.1166949

10. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461

11. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photon., Vol. 3, 461-463, 2009.
doi:10.1038/nphoton.2009.117

12. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisibility cloak for visible light," Phys. Rev. Lett., Vol. 106, 033901, 033901.

13. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, 2011.
doi:10.1038/ncomms1176

14. Ma, T. J. Cui and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, No. 21, 2010.

15. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337-339, 2010.
doi:10.1126/science.1186351

16. Sanchez, A., C. Navau, J. Prat-Camps, and D. X. Chen, "Antimagnets: Controlling magnetic fields with superconductor- metamaterial hybrids," New J. Phys., Vol. 13, 093034, 2011.
doi:10.1088/1367-2630/13/9/093034

17. Gomory, , F., M. Solovyov, J. ·Souc, C. Navau, J. Part-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, 1466-1468, 2012.
doi:10.1126/science.1218316

18. Jiang, W. X., C. Y. Luo, Z. L. Mei, and T. J. Cui, "An ultrathin but nearly perfect direct current electric cloak," Appl. Phys. Lett. , Vol. 102, 014102, 2013.
doi:10.1063/1.4774301

19. Chen, H. and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Appl. Phys. Lett., Vol. 91, 183518, 2007.
doi:10.1063/1.2803315

20. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 106, 24301, 2011.
doi:10.1103/PhysRevLett.106.024301

21. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, 123002, 2008.
doi:10.1103/PhysRevLett.100.123002

22. Brun, M., S. Guenneau, and A. B. Movchan, "Achieving control of in-plane elastic waves," Appl. Phys. Lett., Vol. 94, 061903, 2009.
doi:10.1063/1.3068491

23. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, 248, 2006.
doi:10.1088/1367-2630/8/10/248

24. Fan, C., Y. Gao, and J. Huang, "Shaped graded materials with an apparent negative thermal conductivity," Appl. Phys. Lett. , Vol. 92, 251907, 2008.
doi:10.1063/1.2951600

25. Chen, T., C. N. Weng, and J. S. Chen, "Cloak for curvilinearly anisotropic media in conduction," Appl. Phys. Lett., Vol. 93, 114103, 2008.
doi:10.1063/1.2988181

26. Li, J., Y. Gao, and J. Huang, "A bifunctional cloak using transformation media," J. Appl. Phys., Vol. 108, 074504, 2010.
doi:10.1063/1.3490226

27. Guenneau, S., C. Amra, and D. Veynante, "Transformation thermodynamics: Cloaking and concentrating heat flux," Opt. Express, Vol. 20, 8207-8218, 2012.
doi:10.1364/OE.20.008207

28. Schittny, R., M. Kadic, S. Guenneau, and M. Wegener, "Experiments on transformation thermodynamics: Molding the flow of heat," Phys. Rev. Lett., Vol. 110, 195901, 2013.
doi:10.1103/PhysRevLett.110.195901

29. Narayana, S. and Y. Sato, "Heat flux manipulation with engineered thermal materials," Phys. Rev. Lett., Vol. 108, 214303, 2012.
doi:10.1103/PhysRevLett.108.214303

30. Han, T. C., T. Yuan, B. W. Li, and C. W. Qiu, "Homogeneous thermal cloak with constant conductivity and tunable heat localization," Scientific Reports, Vol. 3, 1593, 2013.

31. Guenneau, S. and T. M. Puvirajesinghe, "Fick's second law transformed: One path to cloaking in mass diffusion," J. R. Soc. Interface, Vol. 10, 20130106, 2013.