Vol. 142
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-20
Attenuation Constants of Radio Waves in Lossy-Walled Rectangular Waveguides
By
Progress In Electromagnetics Research, Vol. 142, 75-105, 2013
Abstract
At the ultra-high frequencies (UHF) common to portable radios, the mine tunnel acts as a dielectric waveguide, directing and absorbing energy as a radio signal propagates. Understanding radio propagation behavior in a dielectric waveguide is critical for designing reliable, optimized communication systems in an underground mine. One of the major parameters used to predict the power attenuation in lossy waveguides is the attenuation constant. In this paper, we theoretically and experimentally investigate the attenuation constants for a rectangular waveguide with dielectric walls. We provide a new derivation of the attenuation constant based on the classic Fresnel reflection coefficients. The new derivation takes advantage of ray representation of plane waves and provides more insight into understanding radio attenuation in tunnels. We also investigate the impact of different parameters on the attenuation constant, including the tunnel transverse dimensions, permittivity, conductivity, frequency, and polarization, with an aim to find their theoretical optimal values that result in the minimum power loss. Additionally, measurements of the attenuation constants of the dominant mode at different frequencies (455, 915, 2450, and 5800 MHz) for a straight concrete tunnel are presented and compared to theoretical predictions. It is shown that the analytical results match the measured results very well at all four frequencies.
Citation
Chenming Zhou, Joseph Waynert, Timothy Plass, and Ronald Jacksha, "Attenuation Constants of Radio Waves in Lossy-Walled Rectangular Waveguides," Progress In Electromagnetics Research, Vol. 142, 75-105, 2013.
doi:10.2528/PIER13061709
References

1. Mazar, R., A. Bronshtein, and I. T. Lu, "Theoretical analysis of UHF propagation in a city street modeled as a random multislit waveguide," IEEE Transactions on Antennas and Propagation, Vol. 46, 864-871, Jun. 1998.
doi:10.1109/8.686775

2. Porrat, D., "Radio propagation in hallways and streets for UHF communications,", Ph.D. Dissertation, Stanford University, 2002.

3. Kyritsi, P. and D. C. Cox, "Propagation characteristics of horizontally and vertically polarized electric fields in an indoor environment: Simple model and results," IEEE 54th Vehicular Technology Conference, VTC Fall, 1422-1426, 2001.

4. Didascalou, D., R. Maurer, and W. Wiesbeck, "Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies," IEEE Transactions on Antennas and Propagation, Vol. 49, 1590-1596, Nov. 2001.
doi:10.1109/8.964095

5. Masson, E., Y. Cocheril, P. Combeau, L. Aveneau, M. Berbineau, R. Vauzelle, et al. "Radio wave propagation in curved rectangular tunnels at 5.8 GHz for metro applications, simulations and measurements," Eurasip Journal on Wireless Communications and Networking, Dec. 2011.

6. Zhang, Y. P., Z. R. Jiang, T. S. Ng, and J. H. Sheng, "Measurements of the propagation of UHF radio waves on an underground railway train," IEEE Transactions on Vehicular Technology, Vol. 49, 1342-1347, Jul. 2000.
doi:10.1109/25.875255

7. Han, G. R., W. M. Zhang, and Y. P. Zhang, "An experiment study of the propagation of radio waves in a scaled model of long-wall coal mining tunnels," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 502-504, 2009.
doi:10.1109/LAWP.2009.2020312

8. Lienard, M. and P. Degauque, "Natural wave propagation in mine environments," IEEE Transactions on Antennas and Propagation, Vol. 48, 1326-1339, Sep. 2000.
doi:10.1109/8.898765

9. Shanklin, J. P., "VHF railroad communications in tunnels," Communications, Vol. 27, 16-19, Jun. 1947.

10. Emslie, A., R. Lagace, and P. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Transactions on Antennas and Propagation,, Vol. 23, 192-205, 1975.
doi:10.1109/TAP.1975.1141041

11. Mahmoud, S. F. and J. R.Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels," Radio Science, Vol. 9, 1147-1158, 1974.
doi:10.1029/RS009i012p01147

12. United States Public Laws, PL 109-236, Mine Improvement and New Emergency Response Act of 2006 (MINER Act), 2006.

13. Zhou, C., J. Waynert, T. Plass, and R. Jacksha, "Modeling RF propagation in tunnels," IEEE International Symposium on Antennas and Propagation (APS2013), 1917-1918, Orlando, FL, 2013.

14. Plass, T., R. Jacksha, J. Waynert, and C. Zhou, "Measurement of RF propagation in tunnels," IEEE International Symposium on Antennas and Propagation (APS 2013), 1604-1605, Orlando, FL, 2013.

15. Marcatili, E. A. J. and R. A. Schemeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., Vol. 43, 1783-1809, Jul. 1964.
doi:10.1002/j.1538-7305.1964.tb04108.x

16. Laakmann, K. D. and W. H. Steier, "Waveguides: Characteristic models of hollow rectangular dielectric waveguides," Applied Optics, 1334-1340, May 1976.
doi:10.1364/AO.15.001334

17. Dudley, D. G., M. Lienard, S. F. Mahmoud, and P. Degauque, "Wireless propagation in tunnels," IEEE Antennas and Propagation Magazine, Vol. 49, No. 11-26, Apr. 2007.

18. Didascalou, D., T. M. Schafer, F. Weinmann, and W. Wiesbeck, "Ray-density normalization for ray-optical wave propagation modeling in arbitrarily shaped tunnels," IEEE Transactions on Antennas and Propagation, Vol. 48, 1316-1325, Sep. 2000.
doi:10.1109/8.898764

19. Mahmoud, S. F., "Modal propagation of high frequency electromagnetic waves in straight and curved tunnels within the earth," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1611-1627, 2005.
doi:10.1163/156939305775537401

20. Yamaguchi, Y., T. Abe, T. Sekiguchi, and J. Chiba, "Attenuation constants of UHF radio-waves in arched tunnels," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, 714-718, 1985.
doi:10.1109/TMTT.1985.1133062

21. Kermani, M. H. and M. Kamarei, "A ray-tracing method for predicting delay spread in tunnel environments," IEEE International Conference on Personal Wireless Communications, 538-542, 2000.

22. Uchida, K., C. K. Lee, T. Matsunaga, T. Imai, and T. Fujii, "A ray tracing method for evaluating field distribution in tunnels," Electronics and Communications in Japan (Part I: Communications), Vol. 83, 11-18, 2000.
doi:10.1002/(SICI)1520-6424(200010)83:10<11::AID-ECJA2>3.0.CO;2-N

23. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, 1758-1768, Jun. 2010.
doi:10.1109/TCOMM.2010.06.080353

24. Fuschini, F. and G. Falciasecca, "A mixed rays-modes approach to the propagation in real road and railway tunnels," IEEE Transactions on Antennas and Propagation, Vol. 60, 1095-1105, Feb. 2012.
doi:10.1109/TAP.2011.2173137

25. Emslie, A., R. Lagace, and P. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Transactions on Antennas and Propagation, Vol. 23, 192-205, 1975.
doi:10.1109/TAP.1975.1141041

26. Loyka, S., "Multiantenna capacities of waveguide and cavity channels," IEEE Transactions on Vehicular Technology, Vol. 54, 863-872, May 2005.
doi:10.1109/TVT.2005.844640

27. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

28. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

29. Schaubach, K. R., N. J. Davis, and T. S. Rappaport, "A ray tracing method for predicting path loss and delay spread in microcellular environments," IEEE 42nd Vehicular Technology Conference, 932-935, May 1992.

30. Chen, S. H. and S. K. Jeng, "SBR image approach for radio wave propagation in tunnels with and without traffic," IEEE Transactions on Vehicular Technology, Vol. 45, 570-578, Aug. 1996.
doi:10.1109/25.533772

31. Mahmoud, S. F., "On modal propagation of high frequency electromagnetic waves in straight and curved tunnels," IEEE Antennas and Propagation Society Symposium, 2963-2966, 2004.

32. Alonso, J., B. Izquierdo, and J. Romeu, "Break point analysis and modelling in subway tunnels," 3rd European Conference on Antennas and Propagation (EuCAP 2009), 3254-3258, 2009.

33. Dudley, D. G. and H. Y. Pao, "System identification for wireless propagation channels in tunnels," IEEE Transactions on Antennas and Propagation, Vol. 53, 2400-2405, Aug. 2005.
doi:10.1109/TAP.2005.852286

34. Guan, K., Z. D. Zhong, B. Ai, and C. Briso-Rodriguez, "Propagation mechanism analysis before the break point inside tunnels," IEEE Vehicular Technology Conference (VTC2011 Fall), 1-5, Sep. 5-8, 2011.

35. Klemenschits, T. and E. Bonek, "Radio coverage of road tunnels at 900 and 1800MHz by discrete antennas," Wireless Networks - Catching the Mobile Future, Proceedings, Vol. I-Iv, 411-415, 1994.