Vol. 142

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-09-01

Four-Band Polarization-Insensitive Metamaterial Absorber Based on Flower-Shaped Structures

By Donghao Zheng, Yongzhi Cheng, Dongfang Cheng, Yan Nie, and Rong Zhou Gong
Progress In Electromagnetics Research, Vol. 142, 221-229, 2013
doi:10.2528/PIER13052607

Abstract

In this paper, a four-band metamaterial absorber (MA) based on flower-shaped structure is proposed. The design, simulation, fabrication, and measurement of the absorbers working in four bands are presented. Simulation results show that the MA has four distinctive absorption peaks at frequencies 6.69 GHz, 7.48 GHz, 8.67 GHz, and 9.91 GHz with the absorptivity of 0.96, 0.99, 0.99 and 0.98, respectively. Experiment results matches well with the simulation. Both experiment and simulation results exhibit that the MA are polarization-insensitive for TE wave and TM wave. The flower-shaped structure is also suitable for designing of a four-band THz and even higher frequency MM absorber, which would be a promising candidate as absorbing elements in scientific and technical applications.

Citation


Donghao Zheng, Yongzhi Cheng, Dongfang Cheng, Yan Nie, and Rong Zhou Gong, "Four-Band Polarization-Insensitive Metamaterial Absorber Based on Flower-Shaped Structures," Progress In Electromagnetics Research, Vol. 142, 221-229, 2013.
doi:10.2528/PIER13052607
http://jpier.org/PIER/pier.php?paper=13052607

References


    1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    3. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

    4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
    doi:10.1126/science.1125907

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic clock at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    6. Maxim, V. G., I. V. Shadrivov, and Y. S. Kivshar, "Enhanced parametric processes in binary metamaterials," Appl. Phys. Lett., Vol. 88, 071912, 2006.
    doi:10.1063/1.2168755

    7. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency bands," J. Appl. Phys., Vol. 96, 5338, 2004.
    doi:10.1063/1.1803942

    8. Sydoruk, O., O. Zhuromskyy, and E. Shamonina, "Phonon-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett., Vol. 87, 072501, 2005.
    doi:10.1063/1.2011789

    9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    10. Hu, T., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication, and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    11. Hu, T., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 432, 25102, 2010.

    12. He, X. J., Y. M. Wang, and T. L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress in Electromagnetics Research, Vol. 115, 381-397, 2011.

    13. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
    doi:10.2528/PIER11101401

    14. Zhang, N., P. Zhou, D. Cheng, X. Weng, J. Xiao, and J. Deng, "Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers," Opt. Lett., Vol. 38, No. 7, 1125-1127, 2013.
    doi:10.1364/OL.38.001125

    15. Lee, H. M. and H. Lee, "A metamaterial based microwave absorber composed of coplanar electric-field-coupled resonator and wire array," Progress In Electromagnetics Research C, Vol. 34, 111-121, 2013.

    16. Cheng, Y. Z., H. L. Yang, Z. Cheng, and B. X. Xiao, "A planar polarization-insensitive metamaterial absorber," Photonics and Nanostructures: Fundamentals and Applications, Vol. 9, 8-14, 2011.
    doi:10.1016/j.photonics.2010.07.002

    17. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    18. Cheng, Y. Z., Y. Nie, R. Z. Gong, and H. L. Yang, "Multi-band metamaterial absorber using cave-cross resonator," Eur. Phys. J. Appl. Phys., Vol. 56, 31301, 2011.
    doi:10.1051/epjap/2011110206

    19. Kollatou, T. M., A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, "A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures," Progress In Electromagnetics Research, Vol. 136, 579-594, 2013.

    20. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    21. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.
    doi:10.2528/PIER12030601

    22. Zhang, F., L. Yang, Y. Jin, and S. He, "Turn a highly-reflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating," Progress In Electromagnetics Research, Vol. 134, 95-109, 2013.

    23. Tuong, P. V., V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, and Y. P. Lee, "Perfect-absorber metamaterial based on flower-shaped structure," Photonics and Nanostructures: Fundamentals and Applications, Vol. 11, 89-94, 2013.
    doi:10.1016/j.photonics.2012.09.002