Vol. 141

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-08-09

Complete Propagation Model Structure Inside Tunnels

By Ke Guan, Zhangdui Zhong, Bo Ai, Ruisi He, Binghao Chen, Yuanxuan Li, and Cesar Briso-Rodriguez
Progress In Electromagnetics Research, Vol. 141, 711-726, 2013
doi:10.2528/PIER13052212

Abstract

In this paper, a complete model structure for propagation inside tunnels is presented by following the segmentation-based modeling thought. According to the concrete propagation mechanism, totally five zones and four dividing points are modeled to constitute three channel structures corresponding to large-size users and small-size users. Firstly, the propagation characteristics and mechanisms in all the zones are modeled. Then, from the view point of the propagation mechanism, the criterion of judging the type of a user is analytically derived. Afterwards, all the dividing points are analytically localized as well. Finally, a panorama covering all the propagation mechanisms, characteristics, models, and dividing pints for all types of users is presented for the first time. This panorama is very useful to gain a comprehensive understanding of the propagation inside tunnels. Validations show that by using the analytical equations in this paper, designers can easily realize a fast network planning for all types of users in various tunnels at different frequencies.

Citation


Ke Guan, Zhangdui Zhong, Bo Ai, Ruisi He, Binghao Chen, Yuanxuan Li, and Cesar Briso-Rodriguez, "Complete Propagation Model Structure Inside Tunnels," Progress In Electromagnetics Research, Vol. 141, 711-726, 2013.
doi:10.2528/PIER13052212
http://jpier.org/PIER/pier.php?paper=13052212

References


    1. Bernardi, P., D. Caratelli, R. Cicchetti, V. Schena, and O. Testa, "A numerical scheme for the solution of the vector parabolic equation governing the radio wave propagation in straight and curved rectangular tunnels," IEEE Trans. on Antennas Propag., Vol. 57, 3249-3257, 2009.
    doi:10.1109/TAP.2009.2027142

    2. Phaebua, K., C. Phongcharoenpanich, M. Krairiksh, and T. Lertwiriyaprapa, "Path-loss prediction of radio wave propagation in an orchard by using modified UTD method," Progress In Electromagnetics Research, Vol. 128, 347-363, 2012.

    3. Liu, Z.-Y. and L.-X. Guo, "A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments," Progress In Electromagnetics Research, Vol. 118, 397-414, 2011.
    doi:10.2528/PIER11041602

    4. Dudley, D. G., M. Lienar, S. F. Mahmud, and P. Degauque, "Wireless propagation in tunnels," IEEE Antennas Propag. Magazine, Vol. 49, 11-26, 2007.
    doi:10.1109/MAP.2007.376637

    5. Sanchez-Escuderos, D., M. Ferrando-Bataller, J. I. Herranz, and M. Baquero-Escudero, "Optimization of the E-plane loaded rectangular waveguide for low-loss propagation," Progress In Electromagnetics Research, Vol. 135, 411-433, 2013.

    6. Dong, J.-F. and J. Li, "Characteristics of guided modes in uniaxial chiral circular waveguides," Progress In Electromagnetics Research, Vol. 124, 331-345, 2012.
    doi:10.2528/PIER11112312

    7. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

    8. Lee, Y.-G., "Electric field discontinuity-considered effective-permittivities and integration-tensors for the three-dimensional finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 118, 335-354, 2011.
    doi:10.2528/PIER11060304

    9. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

    10. Briso-Rodriguez, C., J. M. Cruz, and J. I. Alonso, "Measurements and modeling of distributed antenna systems in railway tunnels," IEEE Trans. on Veh. Technol., Vol. 56, 2870-2879, 2007.
    doi:10.1109/TVT.2007.900500

    11. Zhang, Y. P., "Novel model for propagation loss prediction in tunnels," IEEE Trans. on Veh. Technol., Vol. 52, 1308-1314, 2003.
    doi:10.1109/TVT.2003.816647

    12. Hrovat, A., G. Kandus, and T. Javornik, "Four-slope channel model for path loss prediction in tunnels at 400 MHz," IET Microwaves, Antennas and Propagation, Vol. 4, 571-582, 2010.
    doi:10.1049/iet-map.2009.0159

    13. Guan, K., Z. D. Zhong, B. Ai, C. Briso, and J. I. Alonso, "Measurement of distributed antenna systems at 2.4 GHz in a realistic subway tunnel environment," IEEE Trans. on Veh. Technol., Vol. 61, 834-837, 2012.
    doi:10.1109/TVT.2011.2178623

    14. Song, X. and R. Leonhardt, "Ray-optics analysis of single mode condition for optical waveguides with rectangular cross-section," Progress In Electromagnetics Research, Vol. 135, 81-89, 2013.

    15. Zhang, Y., W. Zhai, X. Zhang, X. Shi, X. Gu, and Y. Deng, "Ground moving train imaging by Ku-band radar with two receiving channels," Progress In Electromagnetics Research, Vol. 130, 493-512, 2012.

    16. Guan, K., Z. Zhong, B. Ai, R. He, and C. Briso-Rodriguez, "Five-zone propagation model for large-size vehicles inside tunnels," Progress In Electromagnetics Research, Vol. 138, 389-405, 2013.

    17. Sun, Z. and I. F. Akyildiz, "Channel Modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Trans. on Communications, Vol. 58, No. 6, 1758-1768, 2010.
    doi:10.1109/TCOMM.2010.06.080353

    18. Emslie, A. G., R. L. Lagace, and P. F. Strong, "Theory of the propagation of uhf radio waves in coal mine tunnels," IEEE Trans. on Antennas Propag., Vol. 23, No. 2, 192-205, 1975.
    doi:10.1109/TAP.1975.1141041

    19. Guan, K., Z. Zhong, B. Ai, R. He, Y. Li, and C. Briso, "Propagation mechanism modeling in the near-region of arbitrary cross-sectional tunnels," International Journal of Antennas and Propagation, Vol. 2012, Article ID 183145, 11 Pages, 2012, doi:10.1155/2012/183145.