Vol. 141

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-07-12

In-Situ Large Area Fabrication of Metamaterials on Arbitrary Substrates Using Paint Process

By Pramod Singh, Christopher Mutzel, Samuel MacNaughton, and Sameer Sonkusale
Progress In Electromagnetics Research, Vol. 141, 117-133, 2013
doi:10.2528/PIER13050313

Abstract

This paper proposes a novel method to make large area metamaterials on arbitrary planar hard or flexible substrates, in-situ. The method is based on painting the desired substrate with metallic and dielectric paints through a patterned stencil mask. We demonstrate this painting approach to fabricate ultra-thin perfect electromagnetic absorbers based on metamaterials at X-band frequencies (8-12 GHz) with paper based stencils, silver ink and latex paint. Measurement results on absorber samples made with this process shows absorption of 95%-99%, in close agreement with simulation results. The proposed painting approach is a simple low cost additive manufacturing process that can be used to realize metamaterial based frequency selective surfaces and filters, radar absorbers, camouflage screens, electromagnetic sensors and EMI protection devices.

Citation


Pramod Singh, Christopher Mutzel, Samuel MacNaughton, and Sameer Sonkusale, "In-Situ Large Area Fabrication of Metamaterials on Arbitrary Substrates Using Paint Process," Progress In Electromagnetics Research, Vol. 141, 117-133, 2013.
doi:10.2528/PIER13050313
http://jpier.org/PIER/pier.php?paper=13050313

References


    1. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
    doi:10.2528/PIER10010603

    2. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
    doi:10.1038/nphoton.2007.28

    3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    4. Chen, H.-T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 144, 597-600, 2006.
    doi:10.1038/nature05343

    5. Shrekenhamer, D., S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors," Optics Express, Vol. 19, 9968-9975, 2011.
    doi:10.1364/OE.19.009968

    6. Liu, X., S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selverasah, A. Totachawattana, R. D. Averitt, S. Sonkusale, and W. J. Padilla, "Metamaterial on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency," Applied Physics Letters, Vol. 96, 011906-1-3, 2010.

    7. Takano, K., T. Kawabata, C. F. Hsieh, F. Miyamaru, M. W. Takeda, R. P. Pan, C. L. Pan, and M. Hangyo, "Terahertz metamaterials fabricated with the super-fine ink-jet printer," 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 656, London, 2009.

    8. Sure, P., "The silver ink printed antenna," Global Identification, 70-72, 2005.

    9. Nikitin, P. V., S. Lam, and K. V. S. Rao, "Low cost silver ink RFID tag antennas," IEEE Antennas and Propagation Society International Symposium, 353-365, 2005.

    10. Tao, H., A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D: Appl. Phys., Vol. 41, 232004-1-5, 2008.

    11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-4, 2008.
    doi:10.1103/PhysRevLett.100.207402

    12. Singh, P. K., K. A. Korolev, M. N. Afsar, and S. Sonkusale, "Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate," Appl. Phys. Lett., Vol. 99, 264101-1-4, 2011.

    13. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Optics Letters, Vol. 36, 1524-1526, 2011.
    doi:10.1364/OL.36.001524

    14. Alici, K. B., A. B. Turhan, C. M. Soukoulis, and E. Ozbay, "Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration," Optics Express, Vol. 19, 14260-14267, 2011.
    doi:10.1364/OE.19.014260

    15. Yu, F., H.Wang, and S. Zou, "Efficient and tunable light trapping thin films," J. Phys. Chem. C, Vol. 114, 2066-2069, 2010.
    doi:10.1021/jp909974h

    16. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, 1-7, 2011.
    doi:10.1038/ncomms1528

    17. Otoshi, T. Y., R. J. Cirillo, and J. Sosnowski, "Measurements of complex dielectric constants of paints and primers for DSN antennas: Part I,", 1-7, NASA Jet Propulsion Laboratory, 1999.

    18. Merilampi, S. L., T. Bjo, A. Bjorninen, L. Vuorimaki, P. Ruuskanen, and L. Sydanheimo, "The effect of conductive ink layer thickness on the functioning of printed UHF RFID antennas," Proceedings of the IEEE, Vol. 98, 1610-1619, 2010.
    doi:10.1109/JPROC.2010.2050570

    19. Wen, Q.-Y., Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, "Transmission line model and fields analysis of metamaterial absorber in the terahertz band," Optics Express, Vol. 17, 20256-20265, 2009.
    doi:10.1364/OE.17.020256

    20. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Trans. on Microw. Theory and Techniques, Vol. 61, 1201-1209, 2013.

    21. Motel, C., S. McNaughton, and S. Sonkusale, "Paint on metamaterial: Low cost fabrication of absorbers at X band frequencies," International Microwave Symposium, 1-3, Montreal, QC, Canada, 2012.

    22. Simms, S. and V. Fusco, "Thin radar absorber using artificial magnetic ground plane," Electronics Letters, Vol. 4, 1311-1313, 2005.
    doi:10.1049/el:20053236

    23. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Trans. Microw. Theory and Techniques, Vol. 59, 2633-2646, 2011.
    doi:10.1109/TMTT.2011.2160198

    24. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    25. Folgueras, L. D. C., M. A. Alves, and M. C. Rezende, "Development, characterization and optimization of dielectric radar absorbent materials as flexible sheets for use at X-band," IEEE MTT-S Microwave and Optoelectronics Conference, 2007.

    26. Singh, D., A. Kumar, S. Menaa, and V. Agrawal, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.

    27. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628