Vol. 140
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-29
Controlled Radiation from Dielectric Slabs Over Spoof Surface Plasmon Waveguides
By
Progress In Electromagnetics Research, Vol. 140, 169-179, 2013
Abstract
The radiation characteristics of dielectric slabs over a transmission waveguide, based on the concept of spoof surface plasmons, are studied in this paper. The proposed structure can be used to control the radiation over a wide band of operation, whilst retaining low Side Lobe Levels (SLLs) and cross-polarization. Leaky modes, broadside radiation and directive beams at fixed angles can all be obtained using various configurations (utilising homogeneous or gradient index dielectric slabs). The proposed antenna design has attractive performance for THz detectors and transmitters.
Citation
Oscar Quevedo-Teruel, "Controlled Radiation from Dielectric Slabs Over Spoof Surface Plasmon Waveguides," Progress In Electromagnetics Research, Vol. 140, 169-179, 2013.
doi:10.2528/PIER13050207
References

1. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999

2. Garcia-Vidal, F., J., L. Martin-Moreno, J. B. Pendry, and , "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S97, 2005.
doi:10.1088/1464-4258/7/2/013

3. Jiang, T., L. Shen, X. Zhang, and L.-X. Ran, "High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces," Progress In Electromagnetics Research M, Vol. 8, 91-102, 2009.
doi:10.2528/PIERM09062901

4. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, No. 2, 754-764, Jan. 2010.
doi:10.1364/OE.18.000754

5. Nesterov, M. L., D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Geometrically induced modification of surface plasmons in the optical and telecom regimes," Opt. Lett., Vol. 35, No. 3, 423-425, Feb. 2010.
doi:10.1364/OL.35.000423

6. Martin-Cano, D., O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Waveguided spoof surface plasmons with deep-subwavelength lateral confinement," Opt. Lett., Vol. 36, No. 23, 4635-4637, Dec. 2011.
doi:10.1364/OL.36.004635

7. Rotman, W., "A study of single-surface corrugated guides," Proceedings of the IRE, Vol. 39, No. 8, 952-959, Aug. 1951.
doi:10.1109/JRPROC.1951.273719

8. Hougardy, R. and R. Hansen, "Scanning surface wave antennas-oblique surface waves over a corrugated conductor," IRE Transactions on Antennas and Propagation, Vol. 6, No. 4, 370-376, Oct. 1958.
doi:10.1109/TAP.1958.1144619

9. Encinar, J., "Mode-matching and point-matching techniques applied to the analysis of metal-strip-loaded dielectric antennas," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 9, 1405-1412, Sep. 1990.
doi:10.1109/8.56992

10. Guglielmi, M. and G. Boccalone, "A novel theory for dielectricin-set waveguide leaky-wave antennas," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 497-504, Apr. 1991.
doi:10.1109/8.81463

11. Grbic, A. and G. Eleftheriades, "Leaky CPW-based slot antenna arrays for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 11, 1494-1504, Nov. 2002.
doi:10.1109/TAP.2002.804259

12. Xu, F., K. Wu, and X. Zhang, "Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 340-347, Feb. 2010.
doi:10.1109/TAP.2009.2026593

13. Neto, A., "UWB, non dispersive radiation from the planarly fed leaky lens antenna, Part 1: Theory and design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2238-2247, Jul. 2010.
doi:10.1109/TAP.2010.2048879

14. Otto, A., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., Vol. 216, 398-410, 1968.

15. Kretschmann, E., "The determination of the optical constants of metals by excitation of surface plasmons," Z. Phys., Vol. 241, 313-324, 1971.

16. Lucyszyn, S. and Y. Zhou, "Characterising room temperature THz metal shielding using the engineering approach," Progress In Electromagnetics Research, Vol. 103, 17-31, 2010.
doi:10.2528/PIER10030801

17. Lucyszyn, S. and Y. Zhou, "Engineering approach to modelling frequency dispersion within normal metals at room temperature for THz applications," Progress In Electromagnetics Research, Vol. 101, 257-275, 2010.
doi:10.2528/PIER09121506

18. Mineo, M. and C. Paoloni, "Comparison of THz backward wave oscillators based on corrugated waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 163-171, 2011.

19. Matvejev, V., C. D. Tandt, W. Ranson, J. Stiens, R. Vounckx, and D. Mangelings, "Integrated waveguide structure for highly sensitive THz spectroscopy of nano-liter liquids in capillary tubes," Progress In Electromagnetics Research, Vol. 121, 89-101, 2011.
doi:10.2528/PIER11090102

20. Treizebre, A., S. Laurette, Y. Xu, R. G. Bosisio, and B. Bocquet, "THz power divider circuits on planar goubau lines (PGLs)," Progress In Electromagnetics Research C, Vol. 26, 219-228, 2012.
doi:10.2528/PIERC11112409

21. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1537-1544, Oct. 1990.
doi:10.1109/8.59765

22. Rajo-Iglesias, E., E., M. Caiazzo, L. Inclan-Sanchez, and P.-S. Kildal, "Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces," IET Microwaves, Antennas Propagation, Vol. 1, No. 1, 184-189, Feb. 2007.
doi:10.1049/iet-map:20050327

23. Quevedo-Teruel, O., L. Inclan-Sanchez, and E. Rajo-Iglesias, "Soft surfaces for reducing mutual coupling between loaded PIFA antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 91-94, 2010.
doi:10.1109/LAWP.2010.2043632

24. Skobelev, S. P. and P.-S. Kildal, "A new type of the quasi-TEM eigenmodes in a rectangular waveguide with one corrugated hard wall," Progress In Electromagnetics Research, Vol. 102, 143-157, 2010.
doi:10.2528/PIER09122305

25. Neto, A., S. Monni, and F. Nennie, "UWB, non dispersive radiation from the planarly fed leaky lens antenna, Part II: Demonstrators and measurements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2248-2258, Jul. 2010.
doi:10.1109/TAP.2010.2048880