Vol. 141

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-08-09

Understand and Realize an ``Invisible Gateway'' in a Classical Way

By Xianqi Lin, Yuan Jiang, Jun Ye Jin, Jia Wei Yu, and Sailing He
Progress In Electromagnetics Research, Vol. 141, 739-749, 2013
doi:10.2528/PIER13042804

Abstract

We create an invisible gateway simply by putting electric and magnetic superscatterers in a metallic waveguide. The characteristics of the electric and magnetic resonators are analyzed in a metallic hollow waveguide, and the dual-mode superscattering property is discussed in detail to broaden the bandwidth of the invisible gateway. Good agreement is achieved between the simulation and measurement for such an invisible gateway. The present work help readers understand easily how an invisible gateway works (or makes sense) in a classical way without using any complex metamaterial or complicated method of transformation optics.

Citation


Xianqi Lin, Yuan Jiang, Jun Ye Jin, Jia Wei Yu, and Sailing He, "Understand and Realize an ``Invisible Gateway'' in a Classical Way," Progress In Electromagnetics Research, Vol. 141, 739-749, 2013.
doi:10.2528/PIER13042804
http://jpier.org/PIER/pier.php?paper=13042804

References


    1. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
    doi:10.1126/science.1126493

    2. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 23, 1780-1782, 2006.
    doi:10.1126/science.1125907

    3. Chen, H. Y., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Mater., Vol. 9, 387-396, 2010.
    doi:10.1038/nmat2743

    4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
    doi:10.1126/science.1058847

    6. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
    doi:10.1103/PhysRevE.72.016623

    7. Li, J. S. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, No. 203901, 2008.

    8. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 3966, 2000.

    9. Wee, W. H. and J. B. Pendry, "Universal evolution of perfect lenses," Phys. Rev. Lett., Vol. 106, No. 165503, 2011.

    10. Chen, H. Y. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, No. 241105, 2007.

    11. Lai, Y., J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Phys. Rev. Lett., Vol. 102, No. 253902, 2009.

    12. Yan, W., M. Yan, and M. Qiu, "Generalized nihility media from transformation optics," Journal of Opti, Vol. 13, No. 024005, 2011.

    13. Rainwater, D., A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alu, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New Journal of Physics, Vol. 14, No. 013054, 2012.

    14. Costa, J. T. and M. G. Silveirinha, "Mimicking the Veselago-Pendry lens with broadband matched double-negative metamaterials," Phys. Rev. B, Vol. 84, No. 155131, 2011.

    15. Jiang, W. X. and T. J. Cui, "Radar illusion via metamaterials," Phys. Rev. E, Vol. 83, No. 026601, 2011.

    16. Luo, X. D., T. Yang, Y. Gu, H. Y. Chen, and H. R. Ma, "Conceal an entrance by means of superscatterer," Phys. Lett., Vol. 94, No. 223513, 2009.

    17. Chen, H., C. T. Chan, S. Liu, and Z. Lin, "A simple route to a tunable electromagnetic gateway," New J. Phys., Vol. 11, No. 083012, 2009.

    18. Li, C., X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, "Experimental realization of a circuit-based broadband illusion-optics analogue," Phys. Rev. Lett., Vol. 105, No. 233906, 2010.

    19. Zhang, J. J., Y. Luo, H. S. Chen, J. Tao, H. Fu, B. Wu, L. X. Ran, and J. A. Kong, "Guiding waves through an invisible tunnel," Optics Express, Vol. 17, No. 8, 6203-6208, 2009.
    doi:10.1364/OE.17.006203

    20. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Power scattering and absorption mediated by cloak/anti-cloak interactions: A transformation-optics route toward invisible sensors," J. Opt. Soc. Am. B, Vol. 27, No. 10, 2132-2140, 2010.
    doi:10.1364/JOSAB.27.002132

    21. Chen, Z. H., L. H. Wang, C. M. Wang, and Z. H. Fang, "General complementary media: Electromagnetically transforming a small rectangle object to a large convex/concave pentagon object," Chinese Optics Letters, Vol. 9, No. 021601, Issue 2, 2011.

    22. Pozar, D. M., Microwave Engineering, 3rd edition, Wiley, New York, 2003.