Vol. 139
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-09
A Hybrid Computer-Aided Tuning Method for Microwave Filters
By
Progress In Electromagnetics Research, Vol. 139, 559-575, 2013
Abstract
A hybrid tuning method for microwave filters is presented in this paper. This novel tuning technique is based on the combination of the Cauchy method and aggressive space mapping (ASM) technique. Cauchy method is applied to determine the characteristic polynomials of the filter's response, then the parameters (coupling matrix) of the low-pass prototype is extracted from the characteristic polynomials. The aggressive space mapping is used to optimized the fine model to guarantee that each step of a tuning is always in the right direction. The validity is verified by two examples. One deals with the four-resonator cross-coupled filter and the other one is an direct coupled six-resonator filter.
Citation
Yong-Liang Zhang, Tao Su, Zhi-Peng Li, and Chang-Hong Liang, "A Hybrid Computer-Aided Tuning Method for Microwave Filters," Progress In Electromagnetics Research, Vol. 139, 559-575, 2013.
doi:10.2528/PIER13032903
References

1. Chaudhary, G., Y. Jeong, K. Kim, and D. Ahn, "Design of dual-band bandpass filters with controllable bandwidths using new mapping function," Progress In Electromagnetics Research, Vol. 124, 17-34, 2012.
doi:10.2528/PIER11111407

2. Gulgowski, J. and J. J. Michalski, "The analytic extraction of the complex-valued coupling matrix and its application in the microwave filter modeling," Progress In Electromagnetics Research, Vol. 130, 131-151, 2012.

3. Ning, H., J. Wang, Q. Xiong, and L. Mao, "Design of planar dual and triple narrow-band bandstop filters with independently controlled stopbands and improved spurious response," Progress In Electromagnetics Research, Vol. 131, 259-274, 2012.

4. Chen, C.-Y. and C.-C. Lin, "The design and fabrication of a highly compact microstrip dual-band bandpass filter," Progress In Electromagnetics Research, Vol. 112, 299-307, 2011.

5. Wu, S.-M., C.-T. Kuo, P.-Y. Lyu, Y.-L. Shen, and C.-I. Chien, "Miniaturization design of full differential bandpass filter with coupled resonators using embedded passive device technology," Progress In Electromagnetics Research, Vol. 121, 365-379, 2011.
doi:10.2528/PIER11091404

6. Lopez, B., D. V. B. Murthy, and A. Corona-Chavez, "Half mode microwave filters based on epsilon near zero and mu near zero concepts," Progress In Electromagnetics Research, Vol. 113, 379-393, 2011.

7. Xiao, K., L. F. Ye, F. Zhao, S. L. Chai, and L. W. Li, "Coupling matrix decomposition in designs and applications of microwave filters," Progress In Electromagnetics Research, Vol. 117, 409-423, 2011.

8. Rezaee, P., M. Tayarani, and R. Knochel, "Active learning method for the determination of coupling factor and external Q in microstrip filter design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011.

9. Yang, R.-Y., C.-Y. Hung, and J.-S. Lin, "Design and fabrication of a quad-band bandpass filter using multi-layered SIR structure," Progress In Electromagnetics Research, Vol. 114, 457-468, 2011.

10. Chen, C.-H., C.-S. Shih, T.-S. Horng, and S.-M. Wu, "Very miniature dual-band and dual-mode bandpass filter designs on an integrated passive device chip," Progress In Electromagnetics Research, Vol. 119, 461-476, 2011.
doi:10.2528/PIER11080105

11. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.

12. Vegesna, S. and M. Sead, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210

13. Meng, W. and K.-L. Wu, "Analytical diagnosis and tuning of narrowband multi-coupled resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 54, 3765-3771, Oct. 2006.
doi:10.1109/TMTT.2006.881623

14. Meng, M. and K.-L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 57, 3188-3195, Dec. 2009.
doi:10.1109/TMTT.2009.2033868

15. Hsu, H.-T., H.-W. Yao, K. A. Zaki, and A. E. Atia, "Computer-aided diagnosis and tuning of cascaded coupled resonators filters," IEEE Trans. on Microw. Theory and Tech., Vol. 50, 1137-1145, Apr. 2002.
doi:10.1109/22.993417

16. Hsu, H.-T., Z. Zhang, K. A. Zaki, and A. E. Atia, "Parameter extraction for symmetric coupled-resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 50, 2971-2978, Dec. 2002.
doi:10.1109/TMTT.2002.805283

17. Macchiarella, G. and D. Traina, "A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurement," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 243-245, May 2006.
doi:10.1109/LMWC.2006.873583

18. Esmaeili, M. and A. Borji, "Diagnosis and tuning of multiple coupled resonator filters," 18th Iranian Conference on Electrical Engineering (ICEE), 124-129, Iran, 2010.
doi:10.1109/IRANIANCEE.2010.5507088

19. Macchiarella, G., "Extraction of unloaded Q and coupling matrix from measurements on filters with large loss," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 307-309, Jun. 2010.
doi:10.1109/LMWC.2010.2047455

20. Lamperez, A. G., T. K. Sarkar, and M. S. Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microwave Wire. Compon. Lett., Vol. 14, No. 10, 490-492, Oct. 2004.
doi:10.1109/LMWC.2004.834576

21. Pepe, G., F.-J. Gortz, and H. Chaloupka, "Sequential tuning of microwave filters using adaptive models and parameter extraction," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 22-31, Jan. 2005.
doi:10.1109/TMTT.2004.839342

22. Accatino, L., "Computer-aided tuning of microwave filters," IEEE Int. Microw. Symp. Dig., 249-252, Jun. 1986.
doi:10.1109/MWSYM.1986.1132161

23. Kahrizi, M., S. Safavi-Naeini, S. K. Chaudhuri, and R. Sabry, "Computer diagnosis and tuning of RF and microwave filters using model-based parameter estimation," IEEE Trans. on Circuit Syst. I, Vol. 49, No. 9, 1263-1270, Sep. 2002.
doi:10.1109/TCSI.2002.802363

24. Harscher, P., R. Vahldieck, and S. Amari, "Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 12, 2532-2538, Dec. 2001.
doi:10.1109/22.971646

25. Wang, R. and J. Xu, "Extracting coupling matrix and unloaded Q from scattering parameters of lossy filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011.

26. Wang, R., J. Xu, C.-L. Wei, M.-Y. Wang, and X.-C.Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonators," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.

27. Michalski, J. J., "Artificial neural networks approach in microwave filter tuning," Progress In Electromagnetics Research, Vol. 13, 173-188, 2010.

28. Michalski, J. J., "Inverse modeling in application for sequential filter tuning," Progress In Electromagnetics Research, Vol. 115, 113-129, 2011.

29. Michalski, J. J., "On linear mapping of filter characteristic to position of tuning elements in filter tuning algorithm," Progress In Electromagnetics Research, Vol. 123, 279-298, 2012.
doi:10.2528/PIER11101009

30. Kacmajor, T. and J. J. Michalski, "Filter tuning based on linear decomposition of scattering characteristics," Progress In Electromagnetics Research, Vol. 135, 451-464, 2013.

31. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 1, Jan. 2003.
doi:10.1109/TMTT.2002.806937

32. Bandler, J. W., et al., "Electromagnetic optimization exploiting aggressive space mapping," IEEE Trans. on Microw. Theory and Tech., Vol. 43, 2874-2882, Dec. 1995.
doi:10.1109/22.475649

33. Zhang, Y.-L., T. Su, B. Wu, and C.-H. Liang, "Tuning of microwave filters based on vector fitting and aggressive space mapping," Journal of South China University of Technology, Vol. 41, 19-23, 2013.

34. Zhang, Y. L., T. Su, Z. P. Li, and C. H. Liang, "A fast tuning method for microwave filter using VF-ASM technology," Progress In Electromagnetics Research M, Vol. 30, 25-37, 2013.