Vol. 138

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-04-03

Comparison of the Two-Scale and Three-Scale Models for Bistatic Electromagnetic Scattering from Ocean Surfaces

By Hejia Luo and Yang Du
Progress In Electromagnetics Research, Vol. 138, 519-536, 2013
doi:10.2528/PIER13022102

Abstract

With rapid development of satellite technology in monitoring the ocean, a good understanding of the physical processes involved in the electromagnetic ocean-surface interaction is required. The composite surface models are usually applied in the analysis of the interaction, hence a systematical check of their region of validity is desirable. Based on a generalized minimal residual procedure which is right preconditioned (GMRES-RP) that we have recently developed which has demonstrated the desirable properties of a numerical algorithm: robust and efficient, in this paper, for bistatic scattering from one dimensional ocean surfaces, we carry out a systematic assessment of the performance of the popular two-scale model and the advanced three-scale model under different conditions of ocean surface wind speeds, polarizations, frequencies, and incidence angles. It is found that the two-scale model in general captures the bistatic scattering pattern, yet the accuracy of geometrical optics (GO) for the large scale wave brings considerable impact on the overall accuracy. If the evaluation of the contribution of the large scale wave is instead using direct numerical integration for the corresponding Kirchhoff integral, impressive improvements are frequently observed, especially at low frequency (L and C bands) and low wind speed (3 m/s). But care should be taken when apply two-scale method with numerical integration, since there are cases where visible discrepancy with method of moment (MoM) are observed. On the other hand, the three-scale model is found in very good agreement with MoM across the considered ocean surface wind speeds, polarizations, frequencies, and incidence angles, hence represents a much advanced model over the two-scale model.

Citation


Hejia Luo and Yang Du, "Comparison of the Two-Scale and Three-Scale Models for Bistatic Electromagnetic Scattering from Ocean Surfaces," Progress In Electromagnetics Research, Vol. 138, 519-536, 2013.
doi:10.2528/PIER13022102
http://jpier.org/PIER/pier.php?paper=13022102

References


    1. Silvestrin, , P., , M. Berger, Y. H. Kerr, and J. Font, "ESA's second earth explorer opportunity mission: The soil moisture and ocean salinity mission-SMOS," IEEE Geosci. Remote Sens. Lett., Vol. 118, 11-14, 2001.

    2. Gaiser, P. W., , et al., "The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 11, 2347-2361, 2004.
    doi:10.1109/TGRS.2004.836867

    3. Wright, , J. W., "A new model for sea clutter," IEEE Trans. Antennas Propag., Vol. 16, No. 2, 217-223, 1968..
    doi:10.1109/TAP.1968.1139147

    4. Lyzenga, , D. R. , J. F. Vesecky, and , "Two-scale polarimetric emissivity model: E±ciency improvements and comparisons with data," Progress In Electromagnetics Research,, Vol. 37, 205-219, 2002..
    doi:10.2528/PIER02101000

    5. Soriano, , G. , M. Saillard, and , "Modelization of the scattering of electromagnetic waves from the ocean surface," Progress In Electromagnetics Research, Vol. 37, 101-128, 2002.
    doi:10.2528/PIER01111800

    6. Vaitilingom, , L. , A. Khenchaf, and , "Radar cross sections of sea and ground clutter estimated by two scale model and small slope approximation in HF-VHF bands," Progress In Electromagnetics Research B,, Vol. 29, 311-338, 2011.
    doi:10.2528/PIERB11021607

    7. Plant, , W. J., , "A stochastic, multiscale model of microwave backscatter from the ocean," J. Geophys. Res., Vol. 107, No. C9, 3120, 2002.
    doi:10.1029/2001JC000909

    8. Romeiser, , R.,s, A. Schmidt, and W. Alpers,s, "A three-scale composite surface model for the ocean wave-radar modulation transfer function," J. Geophys. Res., Vol. 99, No. C5, 9785-9801, 1994.
    doi:10.1029/93JC03372

    9. Banks, , C. J., , C. P. Gommenginger, M. A. Srokosz, and H. M. Snaith, "Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 5, 1688-1702, 2012.
    doi:10.1109/TGRS.2011.2167340

    10. Guimbard, , S., , J. Gourrion, M. Portabella, A. Turiel, C. Gabarro and J. Font, "SMOS semi-empirical ocean forward model adjustment," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 5, 1676-1687, 2012.
    doi:10.1109/TGRS.2012.2188410

    11. Wu, , Z.-S., , J.-P. Zhang, L.-X. Guo, and P. Zhou,s, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
    doi:10.2528/PIER08111803

    12. Sajjad, , N., A. Khenchaf, A. Coatanhay, and A. Awada,s, "An improved two-scale model for the ocean surface bistatic scattering, ," IEEE Trans. Geosci. Remote Sens. Symposium, Vol. 1, I387-I390, 2008.

    13. Voronovich, , A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves Random Media, Vol. 4, No. 3, 337-367, 1994.
    doi:10.1088/0959-7174/4/3/008

    14. Yang, , G., Y. Du, and , "A robust preconditioned GMRES method for electromagnetic scattering from dielectric rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 9, 3396-3408, 2012.
    doi:10.1109/TGRS.2012.2184291

    15. Holliday, , D., , L. L. DeRaad, and G. J. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 722-729, 1996..
    doi:10.1109/8.496263

    16. Chou, H. T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Sci.,, Vol. 33, 1277-1288, 1998..
    doi:10.1029/98RS01888

    17. Torrungrueng, , D., J. T. Johnson, and H. T. Chou, "Some issues related to the novel spectral acceleration method for the fast computation of radiation/scattering from one-dimensional extremely large scale quasi-planar structures," Radio Sci., Vol. 37, No. 2, 1019, 2002.
    doi:10.1029/2000RS002504

    18. Li, , S.-Q., , C. H. Chan, L. Tsang, and L. Zhou, "Microwave emission of rough ocean surfaces with full spatial spectrum based on the multilevel expansion method," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 3, 574-582, 2002..
    doi:10.1109/TGRS.2002.1000317

    19. Gill, , E., , W. Huang, and J. Walsh, , "The effect of the bistatic scattering angle on the high-frequency radar cross sections of the ocean surface," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 2, 143-146, 2008.
    doi:10.1109/LGRS.2008.915594

    20. Ji, W.-J. , C.-M. Tong, and , "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
    doi:10.2528/PIER10041101

    21. Chen, , H., , M. Zhang, and H.-C. Yin, "Facet-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
    doi:10.2528/PIER11101108

    22. Tsang, , L., , J. A. Kong, and K. H. Ding, , Scattering of Electromagnetic Waves: Theories and Applications, John Wiley, 2000.
    doi:10.1002/0471224286

    23. Johnson, , J. T., , R. T. Shin, J. A. Kong, L. Tsang, and K. Pak, "A numerical study of the composite surface model for ocean backscattering ," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 1, 72-83, 1998.
    doi:10.1109/36.655319

    24. Johnson, , J. T., "A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method," IEEE Trans. Antennas Propag., Vol. 46, No. 1, 114-120, 1998.
    doi:10.1109/8.655458

    25. Elfouhaily, , T., , B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res., Vol. 102, No. C7, 781-769, 1997.
    doi:10.1029/97JC00467

    26. Thorsos, , E. I., , "Acoustic scattering from a `Pierson{Moskowitz' sea surface," J. Acoust. Soc. Am., , Vol. 88, No. 1, 335-349, 1990.
    doi:10.1121/1.399909

    27. Durden, S. , "A physical radar cross-section model for a wind-driven sea with swell," IEEE J. Ocean. Eng., Vol. 10, No. 4, 445-451, 1985..
    doi:10.1109/JOE.1985.1145133

    28. Bjerkaas, , A. W. , F. W. Riedel, and , "Proposed model for the elevation spectrum of a wind-roughened sea surface," DTIC Document, Tech. Rep., 1979.

    29. Ulaby, F. T., R. K. Moore, and A. K. Fung, , "Microwave Remote Sensing: Active and Passive, Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory," Artech House, , 1986.

    30. Kasilingam, , D. P., O. H. Shemdin, and , "The validity of the composite surface model and its applications to the modulation of radar backscatter," Int. J. Remote Sensing, Vol. 13, No. 11, 2079-2104, 1992.
    doi:10.1080/01431169208904255

    31. Li, , Y. , J. C. West, and , "Low-grazing-angle scattering from 3-D breaking water wave crests," IEEE Trans. Geosci. Remote Sens.,, Vol. 44, No. 8, 2093-2101, 2006..
    doi:10.1109/TGRS.2006.872129

    32. McDaniel, , S. T., "Small-slope predictions of microwave backscatter from the sea surface," ," Waves Random Media, Vol. 11, No. 3,, Vol. 11, No. 3, 343-360, 2001.