Vol. 139

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-04-17

Performance Evaluation of Dft Beamformers for Broadband Antenna Array Processing

By Yen Lin Chen and Ju-Hong Lee
Progress In Electromagnetics Research, Vol. 139, 57-86, 2013
doi:10.2528/PIER13021604

Abstract

Broadband beamforming has been an important issue on antenna array processing due to many practical demands on communication, radar, or sonar applications. Although several effects deteriorating array performance have been addressed for narrowband beamforming, few of them are considered for the broadband scenario. Besides, the definition of output signal-to-interference plus noise ratio (SINR) and the way to simulate broadband signal sources are usually vague, which further obstructs the development of broadband beamforming. In this paper, the performance of discrete Fourier transform (DFT) beamformers operating in block processing and sliding window modes are investigated when the correlation matrices are known or estimated by finite data samples. The output SINR of DFT beamformers is well-defined, and the generation of broadband signals is clearly introduced. Simulation results with respect to the signal bandwidth, the number of frequency bins, and the number of data samples are presented for illustration and comparison.

Citation


Yen Lin Chen and Ju-Hong Lee, "Performance Evaluation of Dft Beamformers for Broadband Antenna Array Processing," Progress In Electromagnetics Research, Vol. 139, 57-86, 2013.
doi:10.2528/PIER13021604
http://jpier.org/PIER/pier.php?paper=13021604

References


    1. Gu, Y. J., Z.-G. Shi, K. S. Chen, and Y. Li, "Robust adaptive beamforming for a class of Gaussian steering vector mismatch," Progress In Electromagnetics Research, Vol. 81, 315-328, 2008.
    doi:10.2528/PIER08010202

    2. Mestre, X. and M. A. Lagunas, "Finite sample size effect on minimum variance beamformers: optimum diagonal loading factor for large arrays," IEEE Trans. Signal Process., Vol. 54, No. 1, 69-82, Jan. 2006.
    doi:10.1109/TSP.2005.861052

    3. Li, W.-X., Y.-P. Li, and W.-H. Yu, "On adaptive beamforming for coherent interference suppression via virtual antenna array," Progress In Electromagnetics Research, Vol. 125, 165-184, 2012.
    doi:10.2528/PIER12010802

    4. Lee, J.-H. and Y.-L. Chen, "Performance analysis of antenna array beamformers with mutual coupling effects," Progress In Electromagnetics Research B, Vol. 33, 291-315, 2011.
    doi:10.2528/PIERB11052802

    5. Chang, L. and C.-C. Yeh, "Performance of DMI and eigenspace-based beamformers," IEEE Trans. Antennas Propag., Vol. 40, No. 11, 1336-1347, Nov. 1992.
    doi:10.1109/8.202711

    6. Carlson, B. D., "Covariance matrix estimation errors and diagonal loading in adaptive arrays," IEEE Trans. Aerosp. Electron. Syst., Vol. 24, No. 4, 397-401, Jul. 1988.
    doi:10.1109/7.7181

    7. Chen, Y.-L. and J.-H. Lee, "Finite data performance analysis of LCMV antenna array beamformers with and without signal blocking," Progress In Electromagnetics Research, Vol. 130, 281-317, 2012.

    8. Pillai, S. U., Array Signal Processing, Springer-Verlag, New York, 1989.

    9. Rennie, L. L., "The TAP III beamforming system," IEEE J. Ocean. Eng., Vol. 6, No. 1, 18-25, Jan. 1981.
    doi:10.1109/JOE.1981.1145478

    10. Guerci, J. R., J. S. Goldstein, and I. S. Reed, "Optimal and adaptive reduced-rank STAP," IEEE Trans. Aerosp. Electron. Syst., Vol. 36, No. 2, 647-663, Apr. 2000.
    doi:10.1109/7.845255

    11. Tuan, D.-H. and P. Russer, "Signal processing for wideband smart antenna array applications," IEEE Microw. Mag., Vol. 5, No. 1, 57-67, Mar. 2004.
    doi:10.1109/MMW.2004.1284944

    12. Spriet, A., M. Moonen, and J. Wouters, "Robustness analysis of multichannel Wiener filtering and generalized sidelobe cancellation for multimicrophone noise reduction in hearing aid applications," IEEE Trans. Speech Audio Process., Vol. 13, No. 4, 487-503, Jul. 2005.
    doi:10.1109/TSA.2005.845821

    13. Compton, R. T., Adaptive Antennas, Prentice Hall, New Jersey, 1988.

    14. Monzingo, R. A. and T. W. Miller, Introduction to Adaptive Arrays, John Wiley & Sons, New York, 1980.

    15. Van Veen, B. D. and K. M. Buckley, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Magazine, Vol. 5, No. 2, 4-24, Apr. 1988.
    doi:10.1109/53.665

    16. Liu, W., "Adaptive wideband beamforming with sensor delay-lines," Signal Processing, Vol. 89, 876-882, 2009.
    doi:10.1016/j.sigpro.2008.11.005

    17. Lin, M., W. Liu, and R. J. Langley, "Performance analysis of an adaptive broadband beamformer based on a two-element linear array with sensor delay-line processing," Signal Processing, Vol. 90, 269-281, 2010.
    doi:10.1016/j.sigpro.2009.06.016

    18. Frost, O. L., "An algorithm for linearly constrained adaptive array processing," Proc. IEEE, Vol. 60, No. 8, 926-935, Aug. 1972.
    doi:10.1109/PROC.1972.8817

    19. Liu, W. and S. Weiss, Wideband Beamforming: Concepts and Techniques, Wiley, Chichester, UK, 2010.

    20. Wang, B. H., H. T. Hui, and M. S. Leong, "Optimal wideband beamforming for uniform linear arrays based on frequency-domain MISO system identification," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2580-2587, Aug. 2010.
    doi:10.1109/TAP.2010.2050428

    21. Zhao, Y., W. Liu, and R. J. Langley, "Adaptive wideband beamforming with frequency invariance constraints," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1175-1184, Apr. 2011.
    doi:10.1109/TAP.2011.2110630

    22. Hossain, M. S., G. N. Milford, M. C. Reed, and L. C. Godara, "Efficient robust broadband antenna array processor in the presence of look direction errors," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 718-727, Feb. 2013.
    doi:10.1109/TAP.2012.2225014

    23. Godara, L. C., "Application of the fast Fourier transform to broadband beamforming," J. Acoust. Soc. Am., Vol. 98, No. 1, 230-240, Jul. 1995.
    doi:10.1121/1.413765

    24. Godara, L. C. and M. R. Sayyah Jahromi, "Limitations and capabilities of frequency domain broadband constrained beamforming schemes," IEEE Trans. Signal Process., Vol. 47, No. 9, 2386-2395, Sep. 1999.
    doi:10.1109/78.782182

    25. Godara, L. C. and M. R. Sayyah Jahromi, "Convolution constraints for broadband antenna arrays," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3146-3154, Nov. 2007.
    doi:10.1109/TAP.2007.908823

    26. Kamiya, Y. and Y. Karasawa, "Performance comparison and improvement in adaptive arrays based on time- and frequency-domain signal processing," Electronics and Communications in Japan (Part III: Fundamental Electronic Science), Vol. 85, No. 9, 35-42, 2002.
    doi:10.1002/ecjc.1117

    27. Zhang, Y., K. Yang, M. G. Amin, and Y. Karasawa, "Performance analysis of subband arrays," IEICE Trans. Commun., Vol. E84-B, No. 9, 2507-2515, Sep. 2001.

    28. Zhang, Y., K. Yang, and M. G. Amin, "Subband array implementations for space-time adaptive processing," EURASIP J. Appl. Signal Process., Vol. 2005, No. 1, 99-111, 2005.
    doi:10.1155/ASP.2005.99

    29. Compton, R. T., "The relationship between tapped delay-line and FFT processing in adaptive arrays," IEEE Trans. Antennas Propag., Vol. 36, No. 1, 15-26, Jan. 1988.
    doi:10.1109/8.1070

    30. Van Trees, H. L., Optimum Array Processing, John Wiley & Sons, New York, 2002.

    31. Haykin, S., Communication Systems, John Wiley & Sons, New Jersey, 2001.

    32. Scheuer, E. M. and D. S. Stoller, "On the generation of normal random vectors," Technometrics, Vol. 4, No. 2, 278-281, 1962.
    doi:10.1080/00401706.1962.10490011

    33. Grigoriu, M., "Simulation of stationary process via a sampling theorem," Journal of Sound and Vibration, Vol. 166, No. 2, 301-313, 1993.
    doi:10.1006/jsvi.1993.1298

    34. Miller, S. L. and S. L., Probability and Random Processes with Applications to Signal Processing and Communications, Elsevier, Boston, 2004.