Vol. 138

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-04-04

A Physical Optics Approach to the Analysis of Large Frequency Selective Radomes

By Ugo d'Elia, Giuseppe Pelosi, Christian Pichot, Stefano Selleri, and Massimo Zoppi
Progress In Electromagnetics Research, Vol. 138, 537-553, 2013
doi:10.2528/PIER13012810

Abstract

State-of-the-art radomes exploit frequency selective media so as to be transparent for the frequencies of the antenna protected by them and opaque to other frequencies. This feature helps in reducing the radar cross section of the antenna and in protecting it from interference. The study of a frequency selective radome is a daunting task, since the radome is usually large in terms of wavelengths, hence full wave analyses are prohibitive. In this paper an approximate technique, based on the physical optics concept, is proposed to attain an estimation of the behavior of a radome shielded antenna in a short time with a commonly available computer. Results are validated against a full wave technique over a relatively small radome.

Citation


Ugo d'Elia, Giuseppe Pelosi, Christian Pichot, Stefano Selleri, and Massimo Zoppi, "A Physical Optics Approach to the Analysis of Large Frequency Selective Radomes," Progress In Electromagnetics Research, Vol. 138, 537-553, 2013.
doi:10.2528/PIER13012810
http://jpier.org/PIER/pier.php?paper=13012810

References


    1. Paris, , D., "Computer-aided radome analysis," IEEE Trans. on Antennas and Propag., Vol. 18, 7-15, 1970.
    doi:10.1109/TAP.1970.1139614

    2. Einziger, , P. , L. Felsen, and , "Ray analysis of two-dimensional radomes," IEEE Trans. on Antennas and Propag., Vol. 31, 870-884, 1985.
    doi:10.1109/TAP.1983.1143156

    3. Gao, , X. , L. Felsen, and , "Complex ray analysis of beam transmission through two-dimensional radomes," IEEE Trans. on Antennas and Propag., Vol. 33, 963-975, 1985.
    doi:10.1109/TAP.1985.1143711

    4. Orta, , R., , R. Tascone, and R. Zich, "Performance degradation of dielectric radome covered antennas," IEEE Trans. on Antennas and Propag., Vol. 36, 1707-1713, 1988.
    doi:10.1109/8.14392

    5. Harington, , R. , J. Mautz, and , "An impedance sheet approximation for thin dielectric shells," IEEE Trans. on Antennas and Propag., Vol. 23, 531-534, 1975.
    doi:10.1109/TAP.1975.1141099

    6. Arvas, E., S. Ponnapali, and , "Scattering cross section of a radome of arbitrary shape," EEE Trans. on Antennas and Propag., Vol. 37, 655-658, 1989.
    doi:10.1109/8.24194

    7. Arvas, E., A. Rahhalarabi, U. Pekel, and E. Gundogan, "Electromagnetic transmission through a small radome of arbitrary shape," IEE Proc. H, Microw. Antenn. Propagat., Vol. 137, 401-405, 1990.
    doi:10.1049/ip-h-2.1990.0072

    8. Meng, , H. and W.-B. Dou, "Fast analysis of electrically large radome in millimeter wave band with fast multipole acceleration," Progress In Electromagnetics Research, Vol. 120, 371-385, 2011.

    9. Gordon, R. and R. Mittra, "Finite element analysis of axisymmetric radomes," IEEE Trans. on Antennas and Propag.,, Vol. 41, 975-981, 1993.
    doi:10.1109/8.237631

    10. Zhongxiang, , S. , J. Volakis, and , "A hybrid physical opticsmoment method for large nose radome antennas," Proc. IEEE Antennas and Propagation Symposium, 2554-2557, 1999.

    11. Abdel Moneum, , M., , Z. Shen, J. Volakis, and O. Graham, "Hybrid PO-MoM analysis of large axi-symmetric radomes," IEEE Trans. on Antennas and Propag., Vol. 49, 1657-1666, 2001.
    doi:10.1109/8.982444

    12. Hu, , B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MoM analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
    doi:10.2528/PIER09022301

    13. Meng, H. , W.-B. Dou, and , "A hybrid method for the analysis of radome-enclosed horn antenna," Progress In Electromagnetics Research, Vol. 90, 219-233, 2009.
    doi:10.2528/PIER08122502

    14. Sukharevsky, O. , V. Vasilets, and , "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B,, Vol. 4, 159-169, 2008.
    doi:10.2528/PIERB08011404

    15. Pous, , R. and D. Pozar, "A frequency-selective surface using aperture-coupled microstrip patches," IEEE Trans. on Antennas and Propag., Vol. 39, 1763-1769, 1991.
    doi:10.1109/8.121598

    16. Lin, , B.-Q., , F. Li, Q.-R. Zheng, and Y.-S. Zen, "Design and simulation of a miniature thick-screen frequency selective surface radome," IEEE Antennas Wireless Propag. Lett.,, Vol. 8, 1065-1068, 2009.
    doi:10.1109/LAWP.2009.2032251

    17. Munk, B., Frequency Selective Surfaces, Theory and Design, John Wiley & Sons Inc., , New York, NY, , 2000.
    doi:10.1002/0471723770

    18. Ford, , K. , B. Chambers, and , "Improvement in the low frequency performance of geometric transition radar absorbers using square loop impedance layers," IEEE Trans. on Antennas and Propag., Vol. 56, , 133-141, 2008.
    doi:10.1109/TAP.2007.913086

    19. dElia, , U., G. Pelosi, S. Selleri, and R. Taddei, "A carbon nanotube based frequency-selective absorber," Int. J. Microw. Wireless Tech.,, Vol. 2, 479-485, 2010.
    doi:10.1017/S1759078710000693

    20. Rahmat-Samii, , Y., A. Tulintseff, and , "Diffraction analysis of frequency selective reflector antennas," IEEE Trans. on Antennas and Propag., Vol. 41, 476-487, 1993.
    doi:10.1109/8.220980

    21. Wu, , T.-K. , S.-W. Lee, and , "Multiband frequency selective surface with multiring patch elements," IEEE Trans. on Antennas and Propag., Vol. 42, 1484-1490, 1994.
    doi:10.1109/8.362790

    22. Moore, E., "A 10--183 GHz common aperture antenna with a quasioptical frequency multiplexer," Proc. Combined Optical- Microwave Earth and Atmosphere Sensing Symposium, 220-222, 1995.
    doi:10.1109/COMEAS.1995.472316

    23. Erdemli, , Y., , K. Sertel, R. Gilbert, D. Wright, and J. Volakis, "Frequency-selective surfaces to enhance performance of broad band reconfigurable arrays," IEEE Trans. on Antennas and Propag., Vol. 50, 1716-1724, 2002.
    doi:10.1109/TAP.2002.807377

    24. Zadeh, , A. and A. Karlsson, "Capacitive circuit method for fast and e±cient design of wideband radar absorbers," IEEE Trans. on Antennas and Propag., Vol. 57, 2307-2314, 2009.
    doi:10.1109/TAP.2009.2024490

    25. Munir, , A., , V. Fusco, and O. Malyunskin, "Tunable frequency selective surface characterization," Proc. European Microwave Conference, 813-816, 2008..

    26. Cecchini, R., R. Coccioli, and G. Pelosi, "PERIODIC3: A software package for the analysis of artificially anisotropic surfaces," IEEE Antennas Propag. Mag., Vol. 37, 84-86, 1995.
    doi:10.1109/74.382353

    27. Pelosi, , G., , R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves , 2nd Ed., Artech House, , London, UK, 2009.

    28. Parker, , E., , B. Philips, and R. Langley, "Ray tracing analysis of the transmission performance on curved FSS," IEE Proc. Microwaves Antennas Propagat., Vol. 142, 193-200, 1995.
    doi:10.1049/ip-map:19951896

    29. Stanley, , A. , E. Parker, and , "Ray tracing fields backscattered from curved dichroic structures," IEE Proc. Microwaves, Antennas Propagat.,, Vol. 145, 406-410, 1998.
    doi:10.1049/ip-map:19982245

    30. Pei, , Y., , A. Zeng, L. Zhou, R. Zhang, and K. Xu, "Electromagnetic optimal design for dual-band radome wall with alternating layers of staggered composite and kagome lattice structure," Progress In Electromagnetics Research, Vol. 122, 437-452, 2012.
    doi:10.2528/PIER11101906

    31. Zhou, , L., , Y. Pei, R. Zhang, and D. Fang, "Optimal design for high-temperature broadband radome wall with symmetrical graded porous structure," Progress In Electromagnetics Research, Vol. 127, 1-14, 2012.
    doi:10.2528/PIER12030203

    32. Stupfel, , B. , "Impedance boundary conditions for finite planar or curved frequency selective surfaces embedded in dielectric layers," IEEE Trans. on Antennas and Propag., Vol. 53, 3654-3663, 2005.
    doi:10.1109/TAP.2005.858803

    33. Parker, E., B. Philips, and R. Langley, "Analysis of coupling between a curved FSS and an enclosed planar dipole array," IEEE Microw. Guided Wave Lett.,, Vol. 5, 338-340, 1995.
    doi:10.1109/75.465044

    34. Pelosi, , G., , G. Toso, and E. Martini, "PO field expression of a penetrable planar structure in terms of line integral," IEEE Trans. on Antennas and Propag.,, Vol. 48, 1274-1276, 2000.
    doi:10.1109/8.865232

    35. Bresciani, , D. , S. Contu, and , "Scattering analysis of dichroic subreflectors," Electromagnetics, Vol. 5, 375-407, 1985.
    doi:10.1080/02726348508908157