Vol. 137

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Create a Uniform Static Magnetic Field Over 50 T in a Large Free Space Region

By Fei Sun and Sailing He
Progress In Electromagnetics Research, Vol. 137, 149-157, 2013


We propose a compact passive device as a super-concentrator to obtain an extremely high uniform static magnetic field over 50 T in a large two-dimensional free space in the presence of a uniform weak background magnetic field. Our design is based on transformation optics and metamaterials for static magnetic fields. Finite element method (FEM) is utilized to verify the performance of the proposed device.


Fei Sun and Sailing He, "Create a Uniform Static Magnetic Field Over 50 T in a Large Free Space Region," Progress In Electromagnetics Research, Vol. 137, 149-157, 2013.


    1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.

    2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.

    3. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, NY, 2010.

    4. Chen, H. Y., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, 387, 2010.

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977, 2006.

    6. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, 110, 2009.

    7. Rahma, M., D. Schuriga, D. A. Robertsa, S. A. Cummera, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures Fundamentals and Applications, Vol. 6, 87, 2008.

    8. Chen, H. Y. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.

    9. Kwon, D. H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Opt. Express, Vol. 23, 18731, 2008.

    10. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nature Physics, Vol. 5, 687, 2009.

    11. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phys. Lett., Vol. 95, 041106, 2009.

    12. Lai, Y., J. Ng, H. Chen, D. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Phys. Rev. Lett., Vol. 102, 253902, 2009.

    13. Pendry, J. B., A. Aubry, D. R. Smith, and S. A. Maier, "Transformation optics and subwavelength control of light," Science, Vol. 337, 549, 2012.

    14. Yang, F., Z. L. Mei, and T. Y. Jin, "DC electric invisibility cloak," Phys. Rev. Lett., Vol. 109, 053902, 2012.

    15. Jiang, W. X., C. Y. Luo, H. F. Ma, Z. L. Mei, and T. J. Cui, "Enhancement of current density by DC electric concentrator," Scientific Reports, Vol. 2, 956, 2012.

    16. Magnus, F., B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A D.C. magnetic metamaterial," Nature Materials, Vol. 7, 295, 2008.

    17. Wood, B. and J. B. Pendry, "Metamaterials at zero frequency," J. Phys. Condens. Matter, Vol. 19, 076208, 2007.

    18. Narayana, S. and Y. Sato, "DC magnetic cloak," Adv. Mater., Vol. 24, 71, 2012.

    19. Gomory, F., M. Solovyov, J. ·Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, 1466, 2012.

    20. Navau, C., J. Prat-Camps, and A. Sanchez, "Magnetic energy harvesting and concentration at a distance by transformation optics," Phys. Rev. Lett., Vol. 109, 263903, 2012.

    21. Lenz, J. and A. S. Edelstein, "Magnetic sensors and their applications," IEEE Sensors J., Vol. 6, 631, 2006.

    22. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83, 2007.

    23. Ripka, P. and M. Janosek, "Advances in magnetic field sensors," IEEE Sens. J., Vol. 10, 1108, 2010.

    24. Lenz, J. and A. S. Edelstein, "Magnetic sensors and their applications," IEEE Sens. J., Vol. 6, 631, 2006.

    25. Kobayashi, M. and A. Pascual-Leone, "Transcranial magnetic stimulation in neurology," Lancet Neurology, Vol. 2, 45, 2003.

    26. Bonmassar, G., S. W. Lee, D. K. Freeman, M. Polasek, S. I. Fried, and J. T. Gale, "Microscopic magnetic stimulation of neural tissue," Nat. Commun., Vol. 3, 921, 2012.

    27. Brown, M. A. and R. C. Semelka, MRI: Basic Principles and Applications, Wiley-Blackwell, 2010.

    28. Schneider-Muntau, H. J., B. L. Brandt, L. C. Brunel, T. A. Cross, A. S. Edison, A. G. Marshall, and A. P. Reyes, "The national high magnetic field laboratory," Physica B, Vol. 346-347, 643, 2004.

    29. Choi, S., J. Yoon, B. Lee, M.Won, J. Ok, Z. Y. Zhang, T. Kiyoshi, S. Matsumoto, and S. Lee, "Magnetic lens effect using Gd-Ba-Cu-O bulk superconductor in very high magnetic field," Appl. Phys. Lett., Vol. 111, 07E728, 2012.

    30. , , , National High Magnetic Field Laboratory, http://www.magnet.fsu.edu/usershub/scientificdivisions/dcfield/facilities.html.

    31. Jin, Y., P. Zhang, and S. L. He, "Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial," Physical Review B, Vol. 81, No. 8, Art No. 085117, 2010.

    32. Wee, W. H. and J. B. Pendry, "Shrinking optical devices," New Journal of Physics, Vol. 11, 073033, 2009.