Vol. 137

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-02-28

Use of Aligned Carbon Nanotubes as Electric Field Sensors

By Chieh-Lien Lu, Hsin-Jung Tsai, Bee-Yu Wei, and Wen-Kuang Hsu
Progress In Electromagnetics Research, Vol. 137, 439-452, 2013
doi:10.2528/PIER13011707

Abstract

Application of electric field in normal to aligned carbon nanotubes creates Coulomb forces at intertube junctions and tubes become closely packed. Packed structure facilitates intertube transfer of carriers and reduced resistance is found to scale with field strength. Aggregated nanotubes are therefore used as field sensors and sensitivity is evident by drastic fluctuations of resistance. Sensing mechanism is discussed and verified.

Citation


Chieh-Lien Lu, Hsin-Jung Tsai, Bee-Yu Wei, and Wen-Kuang Hsu, "Use of Aligned Carbon Nanotubes as Electric Field Sensors," Progress In Electromagnetics Research, Vol. 137, 439-452, 2013.
doi:10.2528/PIER13011707
http://jpier.org/PIER/pier.php?paper=13011707

References


    1. Dekkers, C., "Carbon nanotubes as molecular quantum wires," Physics Today, Vol. 52, 22-30, 1999.
    doi:10.1063/1.882658

    2. Ebbesen, T. W., H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, "Electrical conductivity of individual carbon nanotubes," Nature, Vol. 382, 54-56, 1996.
    doi:10.1038/382054a0

    3. Farajian, A. A., B. I. Yakobson, H. Mizuseki, and Y. Kawazoe, "Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches," Phys. Rev. B, Vol. 67, 205423, 2003.
    doi:10.1103/PhysRevB.67.205423

    4. Appenzeller, J., J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, "Field-modulated carrier transport in carbon nanotube transistors," Phys. Rev. Lett., Vol. 89, 126801, 2002.
    doi:10.1103/PhysRevLett.89.126801

    5. Li, H.-C., S.-Y. Lu, S.-H. Syue, W.-K. Hsu, and S.-C. Chang, "Conductivity enhancement of carbon nanotube composites by electrolyte addition," Appl. Phys. Lett., Vol. 93, 033104, 2008.
    doi:10.1063/1.2963475

    6. Baumgartner, G., M. Carrard, L. Zuppiroli, W. Bacsa, W. A. de Heer, and L. Forro, "Hall effect and magnetoresistance of carbon nanotube films," Phys. Rev. B, Vol. 55, 6704-6707, 1997.
    doi:10.1103/PhysRevB.55.6704

    7. Lin, Y.-H., Y.-C. Lai, C.-T. Hsu, C.-J. Hu, and W.-K. Hsu, "Why aggregated carbon nanotubes exhibit low quantum efficiency," Physical Chemistry Chemical Physics, Vol. 13, 7149-7153, 2011.
    doi:10.1039/c0cp02691c

    8. Lin, Y.-H., Y.-C. Lai, C.-L. Lu, and W.-K. Hsu, "Excellent cushioning by polymer-concreted arrays of aligned carbon nanotubes," J. Mater. Chem., Vol. 21, 12485, 2011.
    doi:10.1039/c1jm12200b

    9. Ding, J.-J., C.-L. Lu, and W.-K. Hsu, "Capacitive carbon nanotube networks in polymer composites," Appl. Phys. Lett., Vol. 99, 033111, 2011.
    doi:10.1063/1.3615052

    10. Tersoff, J. and R. S. Ruoff, "Structural properties of a carbon-nanotube crystal," Phys. Rev. Lett., Vol. 73, 676, 1994.
    doi:10.1103/PhysRevLett.73.676

    11. Syue, S.-H., C.-T. Hsu, U.-S. Chen, H.-J. Chen, W.-K. Hsu, and H.-C. Shih, "Increased strength of boron-doped carbon nanotube bundles produced by applying an electric field along their length," Carbon, Vol. 47, 1239, 2009.
    doi:10.1016/j.carbon.2008.12.052

    12. Monteverde, M. and M. Nunez-Regueiro, "Pressure control of conducting channels in single-wall carbon nanotube networks," Phys. Rev. Lett., Vol. 94, 235501, 2005.
    doi:10.1103/PhysRevLett.94.235501

    13. Fischer, J. E., H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, "Metallic resistivity in crystalline ropes of single-wall carbon nanotubes," Phys. Rev. B, Vol. 55, 4921-4924, 1997.
    doi:10.1103/PhysRevB.55.R4921

    14. Chin, W., C.-L. Lu, and W.-K. Hsu, "A radiofrequency induced intra-band transition in carbon nanotubes," Carbon, Vol. 49, 2648-2652, 2011.
    doi:10.1016/j.carbon.2011.02.050

    15. Collins, P. G., K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, Vol. 287, 1801-1805, 2000.
    doi:10.1126/science.287.5459.1801

    16. Ramanayaka, A. N. and R. G. Mani, "Microwave-induced electron heating in the regime of radiation-induced magnetoresistance oscillations," Phys. Rev. B, Vol. 83, 165303, 2011.
    doi:10.1103/PhysRevB.83.165303

    17. Li, Y.-F., C.-I. Hung, H.-F. Kuo, S.-H. Syu, W.-K. Hsu, S.-L. Kuo, and S.-C. Huang, "Electromagnetic modulation of carbon nanotube wetting," J. Mater. Chem., Vol. 19, 7694-7697, 2009.
    doi:10.1039/b910793b

    18. Girifalco, L. A., M. Hodak, and R. S. Lee, "Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential," Phys. Rev. B, Vol. 62, 13104-13110, 2000.
    doi:10.1103/PhysRevB.62.13104

    19. Syue, S.-H., S.-Y. Lu, W.-K. Hsu, and H.-C. Shih, "Internanotube friction," Appl. Phys. Lett., Vol. 89, 163115, 2006.
    doi:10.1063/1.2369721

    20. Cheng, T.-W. and W.-K. Hsu, "Winding of single-walled carbon nanotube ropes: An effective load transfer," Appl. Phys. Lett., Vol. 90, 123102, 2007.
    doi:10.1063/1.2714282