Vol. 137

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-02-18

Two Approaches for Incoherent Propagation of Light in Rigorous Numerical Simulations

By Andrej Campa, Janez Krc, and Marko Topic
Progress In Electromagnetics Research, Vol. 137, 187-202, 2013
doi:10.2528/PIER13010407

Abstract

In multidimensional numerical simulations of optoelectronic devices the rigorous Maxwell equations are solved in different ways. However, numerically efficient incoherent propagation of light inside the layers has not been resolved yet. In this paper we present two time- and resource-efficient approaches for optical simulations of incoherent layers embedded in multilayer structures: (a) phase matching and (b) phase elimination approach. The approaches for simulating the incoherent propagation of light in thick layers are derived from Maxwell equations. Both approaches can be applied to any layer in the structure regardless of the position inside the structure and the number of incoherent layers. In rigorous simulations, for low absorbing thick layers scaling down the thickness and increasing extinction coefficient of the layer proportionally is implemented to shorten computational time. The simulation results are verified with the experiment on two types of structures: a bare glass incoherent layer and an amorphous silicon solar cell.

Citation


Andrej Campa, Janez Krc, and Marko Topic, "Two Approaches for Incoherent Propagation of Light in Rigorous Numerical Simulations," Progress In Electromagnetics Research, Vol. 137, 187-202, 2013.
doi:10.2528/PIER13010407
http://jpier.org/PIER/pier.php?paper=13010407

References


    1. Jin, J.-M., The Finite Element Method in Electromagnetics, 2nd Edition, Wiley-IEEE Press, 2002.
    doi:10.1109/8.1074

    2. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, No. 7, 811-818, 1981.
    doi:10.1364/JOSA.71.000811

    3. Fotyga, G., K. Nyka, and M. Mrozowski, "Efficient model order reduction for FEM analysis of waveguide structures and resonators," Progress In Electromagnetics Research, Vol. 127, 277-295, 2012.
    doi:10.2528/PIER12021609

    4. Klopf, E. M., S. B. Manic, M. M. Ilic, and B. M. Notaros, "Efficient time-domain analysis of waveguide discontinuities using higher order FEM in frequency domain," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011.

    5. Guo, X.-M., Q.-X. Guo, W. Zhao, and W. Yu, "Parallel FDTD simulation using NUMA acceleration technique," Progress In Electromagnetics Research Letters, Vol. 28, 1-8, 2012.
    doi:10.2528/PIERL11101706

    6. Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge University Press, Cambridge, 1999.

    7. Rau, U., D. Abou-Ras, and T. Kirchartz, Advanced Characteriation Techniques for Thin Film Solar Cells, Wiley, Weinheim, 2011.

    8. Krc, J., M. Zeman, O. Kluth, F. Smole, and M. Topic, "Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells," Thin Solid Films, Vol. 426, No. 1-2, 296-304, 2003.
    doi:10.1016/S0040-6090(03)00006-3

    9. Solntsev, S. and M. Zeman, "Optical modeling of thin-film silicon solar cells with submicron periodic gratings and nonconformal layers," Energy Procedia, Vol. 10, No. 0, 308-312, 2011.
    doi:10.1016/j.egypro.2011.10.196

    10. Campa, A., J. Krc, and M. Topic, "Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations," Journal of Applied Physics, Vol. 105, No. 8, 083107, 2009.
    doi:10.1063/1.3115408

    11. Isabella, O., A. Campa, M. Heijna, W. J. Soppe, A. J. M. van Erven, R. H. Franken, H. Borg, and M. Zeman, "Diffraction gratings for light trapping in thin-film silicon solar cells," 23rd European Photovoltaic Solar Energy Conference and Exhibition, 2320-2324, Valencia, Spain, 2008.

    12. Haase, C. and H. Stiebig, "Optical properties of thin-film silicon solar cells with grating couplers," Progress in Photovoltaics: Research and Applications, Vol. 14, No. 7, 629-641, 2006.
    doi:10.1002/pip.694

    13. Lipovsek, B., M. Cvek, A. Campa, J. Krc, and M. Topic, "Analysis and optimisation of periodic interface textures in thin-film silicon solar cells," 25th European Photovoltaic Solar Energy Conference and Exhibition, 3120-3123, Valencia, Spain, 2010.

    14. Dewan, R., I. Vasilev, V. Jovanov, and D. Knipp, "Optical enhancement and losses of pyramid textured thin-film silicon solar cells," Journal of Applied Physics, Vol. 110, No. 1, 013101-013101-10, Jul. 2011.
    doi:10.1063/1.3602092

    15. Jandl, C., K. Hertel, C. Pflaum, and H. Stiebig, "Simulation of silicon thin-film solar cells for oblique incident waves," 25th European Photovoltaic Solar Energy Conference and Exhibition, 806505, Valencia, Spain, 2011.

    16. Choi, W. J., Q.-H. Park, D. Kim, H. Jeon, C. Sone, and Y. Park, "FDTD simulation for light extraction in a GaN-based led," Journal of the Korean Physical Society, Vol. 49, No. 3, 877-880, 2006.

    17. Capoglu, I. R., C. A. White, J. D. Rogers, H. Subramanian, A. Ta°ove, and V. Backman, "Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method," Optic Letters, Vol. 36, No. 9, 1596-1598, 2011.
    doi:10.1364/OL.36.001596

    18. Stiebig, H., "Entwicklung und beschreibung von optoelektronischen bauelementen auf der basis amorphen siliziums,", Ph.D. Thsis, Berichte des Forschungszentrums Julich, Julich, 1.
    doi:10.1364/OL.36.001596

    19. Krc, J., "Analysis and modelling of thin-film optoelectronic structures based on amorphous silicon,", Ph.D. Thesis, University of Ljubljana, Ljubljana, 2003.
    doi:10.1364/OL.36.001596

    20. Martin-Palma, R. J., J. M. Martinez-Duart, and A. Macleod, "Determination of the optical constants of a semiconductor thin film employing the matrix method," IEEE Transactions on Education, Vol. 43, No. 1, 63-68, 2000.
    doi:10.1109/13.825742

    21. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Artech Print on Demand, 1987.

    22. Bennett, H. E. and J. O. Porteus, "Relation between surface roughness and specular reflectance at normal incidence," J. Opt. Soc. Am., Vol. 51, No. 2, 123-129, 1961.
    doi:10.1364/JOSA.51.000123

    23. Porteus, J. O., "Relation between the height distribution of a rough surface and the reflectance at normal incidence," Journal of the Optical Society of America, Vol. 53, No. 12, 1394, 1963.
    doi:10.1364/JOSA.53.001394

    24. Carniglia, C. K., "Scalar scattering theory for multilayer optical coatings," Optical Engineering, Vol. 18, 104-115, 1979.

    25. Krc, J., F. Smole, and M. Topic, "Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model," Progress in Photovoltaics: Research and Applications, Vol. 11, No. 1, 15-26, 2003.
    doi:10.1002/pip.460

    26. Springer, J., A. Poruba, and M. Vanecek, "Improved three-dimensional optical model for thin-film silicon solar cells," Journal of Applied Physics, Vol. 96, No. 9, 5329, 2004.
    doi:10.1063/1.1784555

    27. , , , Multiphysics Modeling and Simulation Software, Available: http://www.comsol.com/.
    doi:10.1002/(SICI)1098-2760(19980820)18:6<423::AID-MOP16>3.0.CO;2-#

    28. Warren, G. S. and W. R. Scott, "Numerical dispersion in the finite-element method using three-dimensional edge elements," Microwave and Optical Technology Letters, Vol. 18, No. 6, 423-429, 1998.