Vol. 138

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-03-15

An Extended Frequency Scaling Algorithm for High Squint Spotlight Airborne SAR

By Weihua Zuo, Yiming Pi, and Rui Min
Progress In Electromagnetics Research, Vol. 138, 41-63, 2013
doi:10.2528/PIER13010307

Abstract

In high squint spotlight mode SAR, the coupling of the range and azimuth is very serious, which brings challenges to the imaging. In this paper, an extended frequency scaling algorithm is proposed, in which the range migration correction is divided into two steps. Firstly the range walk correction is implemented in 2D time domain. In the second step, the residual range migration is corrected by the frequency scaling and bulk shift operations. Though the second range compression does not consider the range space variance, the range compression is precise. In the azimuth compression, because of the range walk correction, the azimuth modulation frequency rate becomes dependent on the azimuth position. In order to equalize the azimuth modulation frequency rate, the azimuth nonlinear chirp scaling method is involved to remove the dependence. The simulation experiments verify the validity of the proposed algorithm. The comparison of the imaging quality among traditional frequency scaling algorithm, nonlinear frequency scaling algorithm and the proposed method indicates the proposed method is more suitable for the high squint spotlight SAR.

Citation


Weihua Zuo, Yiming Pi, and Rui Min, "An Extended Frequency Scaling Algorithm for High Squint Spotlight Airborne SAR," Progress In Electromagnetics Research, Vol. 138, 41-63, 2013.
doi:10.2528/PIER13010307
http://jpier.org/PIER/pier.php?paper=13010307

References


    1. Carrara, , W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, , Norwood, 1995.

    2. Cantalloube, , H. and P. Dubois-Fernandez, "Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results," IEE Proc. Radar Sonar Navig., Vol. 152, 163-176, 2006.
    doi:10.1049/ip-rsn:20045097

    3. Mittermayer, J., B. Schettler, and M. Younis, "TerraSAR-X commissioning phase execution summary," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 649-659, 2010.
    doi:10.1109/TGRS.2009.2026744

    4. Schimpf, , H., , A. Wahlen, and H. Essen, "High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps," Electron. Lett., Vol. 39, No. 18, 1346-1348, 2003.
    doi:10.1049/el:20030829

    5. Xu, J., , Y. Pi, and Z. Cao, "Bayesian compressive sensing in synthetic aperture radar imaging," IET Radar Sonar Navig.,, Vol. 6, No. 1, 2-8, 2012.
    doi:10.1049/iet-rsn.2010.0375

    6. Nie, , X., D. Zhu, X. Mao, and Z. Zhu, "The application of the principle of chirp scaling in processing stepped chirps in spotlight SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, 860-864, 2009.
    doi:10.1109/LGRS.2009.2027212

    7. Zhu, , D., S. Ye, and Z. Zhu, "Polar format algorithm using chirp scaling for spotlight sar image formation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 4, 1433-1448, 2008.
    doi:10.1109/TAES.2008.4667720

    8. Nie, , X., , D. Zhu, X. Mao, and Z. Zhu, "The application of the principle of chirp scaling in processing stepped chirps in spotlight SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, 860- 864, 2009.
    doi:10.1109/LGRS.2009.2027212

    9. Shin, , H.-S. and J.-T. Lim, "Range migration algorithm for airborne squint mode spotlight SAR imaging," IET Radar Sonar Navig., Vol. 1, No. 1, 77-82, 2007.
    doi:10.1049/iet-rsn:20060080

    10. Shin, , H.-S. and J. T. Lim, "Omega-K algorithm for spaceborne spotlight SAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 3, 343-347, 2012.
    doi:10.1109/LGRS.2011.2168380

    11. Park, , S.-H., , J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using effcient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.

    12. Moreira, A., , J. Mittermayer, and R. Scheiber, "Extended chirp scaling SAR data processing in stripmap, scanSAR and spotlight imaging modes," EUSAR2000, 749-752, 2000.

    13. Lanari, , R., , P. Franceschetti, M. Tesauro, and E. Sansosti, "Spotlight SAR image generation based on strip mode focusing techniques," Proc. IGARSS, 1761-1763, 1999.

    14. Lanari, R., , M. Tesauro, E. Sansosti, and G. Fornaro, "Spotlight SAR data focusing based on a two-step processing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 9, 1993-2004, 2001.
    doi:10.1109/36.951090

    15. An, , D., X. Huang, T. Jin, and Z. Zhou, "Extended two-step focusing approach for squinted spotlight SAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2889-2990, 2012.
    doi:10.1109/TGRS.2011.2174460

    16. Mittermayer, J. and A. Moreira, "Spotlight SAR data processing using the frequency scaling algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2198-2213, 1999.
    doi:10.1109/36.789617

    17. Zhu, , D., , M. Shen, and Z. Zhu, "Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 6, 1579-88, 2008.
    doi:10.1109/TGRS.2008.916468

    18. Jin, , L. and X. Liu, "Nonlinear frequency scaling algorithm for high squint spotlight SAR data processing," EURASIP Journal on Advances in Signal Processing, Vol. 2008, 1-8, 2008.
    doi:10.1155/2008/657081

    19. Davidson, , G. W., , I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, 121-133, 1996.
    doi:10.1109/7.481254

    20. Hu, , C., T. Long, and Y. Tian, "An improved nonlinear chirp scaling algorithm based on curved trajectory in geosynchronous SAR," Progress In Electromagnetics Research , Vol. 135, 481-513, 2013.

    21. Sun, G. C., X. W. Jiang, M. D. Xing, Z. J. Qiao, Y. R. Wu, and Z. Bao, "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2308-2322, 2011.
    doi:10.1109/TGRS.2010.2102040

    22. An, , D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
    doi:10.2528/PIER11112110

    23. Wong, , F. H. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 5, 946-953, 2001.
    doi:10.1109/36.921412

    24. Cao, , Z. and L. Chen, "Security in application layer of radar sensor networks: Detect friends or foe," Security and Communication Networks, No. 1, 35-40, 2012.

    25. Liao, , K.-F., X.-L. Zhang, and J. Shi, "Fast 3-D microwave imaging method based on subaperture approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
    doi:10.2528/PIER12011106