Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-22
Near Infrared Filtering Properties in Photonic Crystal Containing Extrinsic and Dispersive Semiconductor Defect
By
Progress In Electromagnetics Research, Vol. 137, 359-370, 2013
Abstract
In this work, near infrared filtering properties in a transmission narrowband filter are theoretically investigated. The filter is a defective photonic crystal of (LH)ND(HL)N, where N is the stack number, L is SiO2, H is InP, and defect layer D is an extrinsic semiconductor of n-type silicon (n-Si). It is found that there are multiple transmission peaks within the photonic band gap (PBG) as the defect thickness increases. The filtering position can be changed by varying the doping density in n-Si. That is, the peak (channel) wavelength is blued-shifted when the doping density increases. In the angle-dependent filtering property, the channel wavelength is also blued-shifted as the angle of incidence increases for both TE and TM waves. These filtering properties are of technical use in the applications of semiconductor optoelectronics.
Citation
Chi-Chung Liu, and Chien-Jang Wu, "Near Infrared Filtering Properties in Photonic Crystal Containing Extrinsic and Dispersive Semiconductor Defect," Progress In Electromagnetics Research, Vol. 137, 359-370, 2013.
doi:10.2528/PIER13010107
References

1. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/∼orfanidi/ewa.

2. Choudhury, P. K. and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
doi:10.2528/PIER10021104

3. McPhail, D., M. Straub, and M. Gu, "Optical tuning of threedimensional photonic crystals fabricated by femtosecond direct writing," Applied Physics Letters, Vol. 87, 091117, 2005.
doi:10.1063/1.2037862

4. Halevi, P., J. A. Reyes-Avendano, and J. A. Reyes-Cervantes, "Electrically tuned phase transition and band structure in a liquidcrystal-infilled photonic crystal," Physical Review E, Vol. 73, R040701, 2006.

5. Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals," Physical Review B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505

6. Wu, C.-J., C.-L. Liu, and W.-K. Kuo, "Analysis of thicknessdependent optical properties in a one-dimensional superconducting photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1113-1122, 2009.

7. Lyubchanskii, I. L., N. N. Dadoenkova, A. E. Zabolotin, Y. P. Lee, and Th. Rasing, "A one-dimensional photonic crystal with a superconducting defect layer," Journal of Optics A: Pure Appl. Opt., Vol. 11, 114014, 2009.
doi:10.1088/1464-4258/11/11/114014

8. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal," Optics Express, Vol. 18, 27155-27166, 2010.
doi:10.1364/OE.18.027155

9. Anlage, S. M., "The physics and applications of superconducting metamaterials," Journal of Optics, Vol. 13, 024001, 2011.
doi:10.1088/2040-8978/13/2/024001

10. Hu, C. A., J.-W. Liu, C.-J. Wu, T.-J. Yang, and S.-L. Yang, "Effects of superconducting thin film on the defect modes in a heterostructure photonic crystal," Solid State Communications, Vol. 157, 54-57, 2013.
doi:10.1016/j.ssc.2012.12.022

11. Wu, C.-J., J.-J. Liao, and T. W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.

12. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics esearch, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605

13. Tian, H. and J. Zi, "One-dimensional tunable photonic crystals by means of external magnetic fields," Optics Communications, Vol. 252, 321-328, 2005.
doi:10.1016/j.optcom.2005.04.022

14. Halevi, P. and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Physical Review Letters, Vol. 85, 1875-1878, 2000.
doi:10.1103/PhysRevLett.85.1875

15. Halevi, P., A. S. Sanchez, and E. Galindo-Linares, "Tuning and switching of spontaneous emission in one-dimensional photonic crystals," Optics Communications, Vol. 269, 351-355, 2007.
doi:10.1016/j.optcom.2006.08.010

16. Galindo-Linares, E., P. Halevi, and A. S. Sanchez, "Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54mm," Solid State Communications, Vol. 142, 67-70, 2007.
doi:10.1016/j.ssc.2007.01.018

17. King, T.-C., Y.-P. Yang, Y.-S. Liou, and C.-J. Wu, "Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect," Solid State Communications, Vol. 152, 2189-2192, 2012.
doi:10.1016/j.ssc.2012.10.004

18. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal," Progress In Electromagnetics Research, Vol. 125, 219-235, 2012.
doi:10.2528/PIER12010311

19. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Analysis of tunable multiple-filtering property in a photonic crystal containing strongly extrinsic semiconductor," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2089-2099, 2011.
doi:10.1163/156939311798072009

20. Tan, C., G. Fan, T. Zhou, S. Li, and H. Sun, "Preparation of InP-SiO2 3D photonic crystals," Physica B, Vol. 363, 1-6, 2005.

21. Ghosh, R., K. K. Ghosh, and R. Chakraborty, "Narrow band filter using 1D periodic structure with defects for DWDW systems," Optics Communications, Vol. 289, 75-80, 2013.
doi:10.1016/j.optcom.2012.10.001

22. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.

23. Tolmachev, V. A., A. V. Baldycheva, K. Berwick, and T. S. Perova, "Influence of fluctuations of the geometrical parameters on the photonic band gaps in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 126, 285-302, 2012.
doi:10.2528/PIER12020109

24. Wu, C.-J., T.-J. Yang, C. C. Li, and P. Y. Wu, "Investigation of effective plasma frequencies in one-dimensional plasma photonic crystals," Progress In Electromagnetics Research, Vol. 126, 521-538, 2012.
doi:10.2528/PIER12030505

25. Dai, X., Y. Xiang, and S. Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

26. Mouldi, A. and M. Kanzari, "Design of microwave devices exploiting fibonacci and hybrid periodic/fibonacci one dimensional photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 221-240, 2012.

27. Zhang, H. F., S. Liu, X.-K. Kong, B.-R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in fibonacci quasi-periodic one-dimensional superconductor photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.

28. Pierret, R. F., Semiconductor Device Fundamentals, Addison-Wesley, Massachusetts, 1996.

29. Hsu, H.-T., M.-H. Lee, T.-J. Yang, Y.-C. Wang, and C.-J. Wu, "A multichanneled filter in a photonic crystal containing coupled defects," Progress In Electromagnetics Research, Vol. 117, 379-392, 2012.