Vol. 138

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-03-13

An Impedance-Permeability Self-Resonance of Inductance Coil with Metamaterials

By Qiang Yu, Qian Zhao, and Yonggang Meng
Progress In Electromagnetics Research, Vol. 138, 21-30, 2013
doi:10.2528/PIER12122408

Abstract

An impedance-permeability (Z-μr) resonance phenomenon is firstly founded and numerically demonstrated when electromagnetic metamaterials with negative permeability are firstly introduced into inductance coil. Numerical results reveal that the impedance-permeability relationship exhibits an extraordinary self-resonant phenomenon at a certain negative value of relative permeability, which is related to the dimensions of the core but nearly independent to the coil size. Such a mechanism is proposed to increase the sensitivity of eddy current (EC) sensors up to about 270 times, offering a new method to greatly improve the sensitivity of EC sensors and the spatial resolution with micrometer scale.

Citation


Qiang Yu, Qian Zhao, and Yonggang Meng, "An Impedance-Permeability Self-Resonance of Inductance Coil with Metamaterials," Progress In Electromagnetics Research, Vol. 138, 21-30, 2013.
doi:10.2528/PIER12122408
http://jpier.org/PIER/pier.php?paper=12122408

References


    1. Sakran, , F., , M. Golosovsky, H. Goldberger, D. Davidov, and A. Frenkel, "High-frequency eddy-current technique for thickness measurement of micron-thick conducting layers ," Appl. Phys. Lett., Vol. 78, No. 11, 1634-1636, 2001.
    doi:10.1063/1.1355298

    2. Lantz, , M. A., , S. P. Jarvis, and H. Tokumoto, "High resolution eddy current microscopy," Appl. Phys. Lett., Vol. 78, No. 3, 383-385, 200.
    doi:10.1063/1.1339840

    3. Dodd, , C. V. , W. E. Deeds, and , "Analytical solutions to eddy-current probe-coil problems," Journal of Applied Physics, Vol. 39, No. 6, 2829-2838, 1968.
    doi:10.1063/1.1656680

    4. Uzal, E. , J. H. Rose, and , "The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1869-1873, 1993.
    doi:10.1109/20.250771

    5. Hugo, G. R. , S. K. Burke, and , "Impedance changes in a coil due to a nearby small conducting sphere," Phys. D: Appl. Phys., Vol. 21, 33-38, 1988.
    doi:10.1088/0022-3727/21/1/005

    6. Yin, , W. and A. J. Peyton, "Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors," NDT&E Int., Vol. 40, 43-48, 2007.
    doi:10.1016/j.ndteint.2006.07.009

    7. Yin, , W. and A. J. Peyton., "Thickness measurement of metallic plates with an electromagnetic sensor using phase signature analysis," IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 8, 1803-1807, 2008.
    doi:10.1109/TIM.2008.923777

    8. Tai, , C. C., "Characterization of coatings on magnetic metal using the swept-frequency eddy current method," Rev. Sci. Instrum.,, Vol. 71, No. 8, 3161-3167, 2000.
    doi:10.1063/1.1304862

    9. Watson, , C. C. , W. K. Chan, and , "High-spatial-resolution semiconductor characterization using a microwave eddy current probe," Appl. Phys. Lett., Vol. 78, No. 1, 129-131, 2001.
    doi:10.1063/1.1337639

    10. Hamia, , R., , C. Cordier, S. Saez, and C. P. Dolabdjian, "Eddy-current nondestructive testing using an improved GMR magnetometer and a single wire as inducer: A FEM performance analysis ," IEEE Transactions on Magnetics, Vol. 46, No. 10, 3731-3737, 2010.
    doi:10.1109/TMAG.2010.2052827

    11. Zhao, , Q., , Q. Yu, Z. L. Qu, L. Si, X. L. Lu, and Y. G. Meng, "Thickness measurement of nano-metallic film with electromagnetic sensor under large sensor-sample distance ," 2011 IEEE Instrumentation and Measurement Technology Conference,, 39-42, 2011.

    12. Chen, , H. T., , W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, \, "Active terahertz metamaterials devices," Nature, Vol. 444, 597, 2006.
    doi:10.1038/nature05343

    13. Valagiannopoulos, , C. A., , "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

    14. Butt, , H., , Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

    15. Pendry, , J. B., , "Negative refraction makes a perfect lens," Phys. Rev. Lett., No. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    16. Yuan, Y., , L. Ran, H. S. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Backward coupling waveguide coupler using left-handed material ," Appl. Phys. Lett., Vol. 88,-211903, , 2006.

    17. Boyvat, , M., C. V. Hafner, and , "Molding the flow of magnetic ¯eld with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
    doi:10.2528/PIER12022010

    18. Canto, J. R., , C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research,, Vol. 116, 409-423, 2011.

    19. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, , Vol. 8, 568-571, 2009.
    doi:10.1038/nmat2461

    20. Chen, , H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

    21. Shelby, , R. A., , D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    22. Zhao, , Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., , Vol. 101, 027402, 2008.
    doi:10.1103/PhysRevLett.101.027402

    23. Smith, , D. R., , W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    24. Pendry, , J. B., , D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    25. Shao, , J., , H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research,, Vol. 119, 225-237, 2011.
    doi:10.2528/PIER11052507

    26. Zhang, , J. and N. A. Mortensen, "Ultrathin cylindrical cloak," Progress In Electromagnetics Research, Vol. 121, 381-389, 2011.

    27. Li, , J. , H. Liu, and , "A class of polarization-invariant directional cloaks by concatenation via transformation optics," Progress In Electromagnetics Research, Vol. 123, 175-187, 2012.

    28. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research,, Vol. 124, 151-162, 2012.

    29. lo, , L., , F. Jangal, M. Darces, J.-L. Montmagnon, and M. Helier, "Negative permittivity media able to propagate a surface wave," Progress In Electromagnetics Research, Vol. 115, 1-10, 2011.

    31. Li, , Y. Y. , G. D. Li, and , Ferrite Physics, , Science Press, , Beijing, 1978.

    32. Slama, J., , R. Dosoudil, R. Vicen, A. Gruskova, V. Olah, I. Hudec, and E. Usak, , "Frequency dispersion of permeability in ferrite polymer composites," Journal of Magnetism and Magnetic Materials, Vol. 254{255, 195{197, 2003, Vol. 254-255, 195-197, 2003.