Vol. 136
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-23
Design and Analysis of Multichannel Transmission Filter Based on the Single-Negative Photonic Crystal
By
Progress In Electromagnetics Research, Vol. 136, 561-578, 2013
Abstract
In this work, the multiple filtering phenomenon in a photonic crystal made of single-negative (SNG) materials is investigated. We consider a finite photonic crystal (AB)N immersed in air, in which A, B are epsilon-negative (ENG) and mu-negative (MNG) materials, respectively, and N is the stack number. It is found that such a photonic crystal can function as a multichannel transmission filter with a channel number equal to N-1. The required condition is that the thickness of MNG layer must be larger than that of ENG layer when magnetic plasma frequency is greater than electric plasma frequency. The channel frequencies can be red-shifted as the thickness of MNG layer decreases. The channel positions can be tuned by the incidence angle for both TE and TM polarizations. That is, the peak frequency is blue-shifted when the angle of incidence increases. Additionally, the influence of the static permeability of ENG medium and permittivity of MNG medium is also illustrated. The proposed structure can thus be used to design as a tunable multichannel filter which is of technical use in signal processing.
Citation
Chien-Jang Wu, Min-Hung Lee, and Jun-Zhe Jian, "Design and Analysis of Multichannel Transmission Filter Based on the Single-Negative Photonic Crystal," Progress In Electromagnetics Research, Vol. 136, 561-578, 2013.
doi:10.2528/PIER12122202
References

1. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 7, Rutger University, 2008, www.ece.rutgers.edu/»orfanidi/ewa.

2. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

3. Qiao, F., C. Zhang, and J. Wan, "Photonic quantum-well structure: Multiple channeled filtering phenomena," Applied Physics Letters, Vol. 77, 3698-3700, 2000.
doi:10.1063/1.1330570

4. Liu, J., J. Sun, C. Huang, W. Hu, and D. Huang, "Optimizing the spectral efficiency of photonic quantum well structures," Optik, Vol. 120, 35-39, 2009.
doi:10.1016/j.ijleo.2007.06.011

5. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal," Optics Express, Vol. 18, 27155-27166, 2009.
doi:10.1364/OE.18.027155

6. Li, C., S. Liu, X. Kong, H. Zhang, B. Bian, and X. Zhang, "A novel comb-like plasma photonic crystal filter in the presence of evanescent wave ," IEEE Transactions on Plasma Science, Vol. 39, 1969-1973, 2011.
doi:10.1109/TPS.2011.2162653

7. Wu, C.-J., Y.-J. Lee, T.-C. King, and W.-K. Kuo, "A multichannel filter based on the finite plasma photonic crystal," Key Engineering Materials, Vol. 538, 297-300, 2013.
doi:10.4028/www.scientific.net/KEM.538.297

8. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Analysis of tunable multiple-filtering property in a photonic crystal containing strongly extrinsic semiconductor," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2089-2099, 2011.
doi:10.1163/156939311798072009

9. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

10. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.

11. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer ," Progress In Electromagnetics Research, Vol. 118, 151-165, 2011.
doi:10.2528/PIER11040202

12. Radi, Y., S. Nikmehr, and S. Hosseinzadeh, "A rigorous treatment of vertical dipole impedance located above lossy DPS, MNG, ENG, and DNG half-space," Progress In Electromagnetics Research, Vol. 116, 107-121, 2011.

13. Petrillo, L., F. Jangal, M. Darces, J.-L. Montmagnon, and M. Hélier, "Negative permittivity media able to propagate a surface wave," Progress In Electromagnetics Research, Vol. 115, 1-10, 2011.

14. Ng Mou Kehn, M., "Spherical slotted antenna coated with double layer of materials having combinations of singly and doubly negative parameters and consequences of mode resonances," Progress In Electromagnetics Research B, Vol. 45, 223-249, 2012.

15. Liu, C.-H. and N. Behdad, "Theoretical examination of electromagnetic wave tunneling through cascaded ε- and μ-negative metamaterial slabs," Progress In Electromagnetics Research B, Vol. 42, 1-22, 2012.

16. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Transactions on Antenna Propagation, Vol. 51, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

17. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer," Physical Review B, Vol. 83, 081105(R), 2011.

18. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.

19. Feng, T., Y. Li, H. Jiang, Y. Sun, L. He, H. Li, Y. Zhang, Y. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Physical Review E, Vol. 79, 026601, 2009.
doi:10.1103/PhysRevE.79.026601

20. Ding, Y. Q., Y. H. Li, H. T. Jiang, and H. Chen, "Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterial pair," PIERS Online, Vol. 6, No. 2, 109-112, 2010.
doi:10.2529/PIERS091004104845

21. Fredkin, D. R. and A. Ron, "Effective left-handed (negative index) composite material," Applied Physics Letters, Vol. 81, 1753-1755, 2002.
doi:10.1063/1.1505119

22. Wang, L. G., H. Chen, and S. Y. Zhou, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Physical Review B, Vol. 70, 245102, 2004.
doi:10.1103/PhysRevB.70.245102

23. Yeh, D.-W. and C.-J. Wu, "Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative material," Optics Express, Vol. 17, 16666-16680, 2009.
doi:10.1364/OE.17.016666

24. Yeh, D.-W. and C.-J. Wu, "Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal," Journal of Optical Society of America B, Vol. 26, 1506-1510, 2009.
doi:10.1364/JOSAB.26.001506

25. Chen, Y., X. Wang, Z. Yong, Y. Zhang, Z. Chen, L. He, P. F. Lee, H. L. W. Chan, C. W. Leung, and Y. Wang, "Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials," Physics Letters A, Vol. 376, 1396-1400, 2012.
doi:10.1016/j.physleta.2012.01.044

26. Lin, W.-H., C.-J. Wu, and S.-J. Chang, "Angular dependence of wave reflection in a lossy single-negative bilayer," Progress In Electromagnetics Research, Vol. 107, 253-267, 2010.
doi:10.2528/PIER10061606

27. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.

28. Lin, W.-H., C.-J. Wu, and S.-J. Chang, "Analysis of angle-dependent unusual transmission in lossy single-negative (SNG) materials," Solid State Communications, Vol. 150, 1729-1732, 2010.
doi:10.1016/j.ssc.2010.07.035

29. Jiang, H., H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhou, "Properties of one-dimensional photonic crystals containing single-negative materials," Physical Review E, Vol. 69, 066607, 2004.
doi:10.1103/PhysRevE.69.066607

30. Depine, R. A., M. L. Martínez-Ricci, J. A. Monsoriu, E. Silvestre, and P. Andrés, "Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals," Physics Letters A, Vol. 364, 352-355, 2007.
doi:10.1016/j.physleta.2006.11.093

31. Dong, L., G. Du, H. Jiang, H. Chen, and Y. Shi, "Transmission properties of lossy single-negative materials," Journal of Optical Society of America B, Vol. 26, 1091-1096, 2009.
doi:10.1364/JOSAB.26.001091

32. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Technology, Vol. 50, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

33. Li, P. and Y. Liu, "Multichannel filtering properties of photonic crystals consisting of single-negative materials," Physics Letters A, Vol. 373, 1870-1873, 2009.
doi:10.1016/j.physleta.2009.03.035

34. Rahimi, H., "Backward Tamm states in 1D single-negative metamaterial photonic crystals," Progress In Electromagnetics Research Letters, Vol. 13, 149-159, 2010.
doi:10.2528/PIERL09121305

35. Shi, L., S. Wang, C. Tang, and L. Gao, "Omnidirectional surface guided modes from one-dimensional photonic crystal formed by single-negative materials," Journal of Magnetism and Magnetic Materials, Vol. 311, 609-613, 2007.
doi:10.1016/j.jmmm.2006.08.020

36. Chen, Y., Y. Wang, C. W. Leung, M. Hu, and H. L. W. Chan, "Photonic gap vanishing in one-dimensional photonic crystals with single-negative metamaterials," Physics Letters A, Vol. 375, 2465-2470, 2011.
doi:10.1016/j.physleta.2011.04.045

37. Wang, L.-G., H. Chen, and S.-Y. Zhou, "Wave propagation inside one-dimensional photonic crystals with single-negative materials," Physics Letters A, Vol. 350, 410-415, 2006.
doi:10.1016/j.physleta.2005.10.070