Vol. 136

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-01-30

Magnetic Field Shielding by Metamaterials

By Mustafa Boyvat and Christian V. Hafner
Progress In Electromagnetics Research, Vol. 136, 647-664, 2013
doi:10.2528/PIER12121805

Abstract

Magnetic field shielding at low frequencies is a problem of high importance that is known for a long time. Metamaterials, which are known from fancy applications such as the so-called perfect lens and cloaking, also offer a new way to create efficient magnetic shielding by means of anisotropic metamaterials with low permeability in one direction. Such metamaterials can be constructed by assembling arrays of relatively simple LC circuits. In this paper, we analyze different metamaterials and show how they may be designed. We show that typical resistive losses in the coils and capacitors of the LC circuits reduce the shielding quality. Then, we consider the possibility of active electronic loss compensation and discuss the drawbacks of this concept. After this, we propose a purely passive way that benefits from the inhomogeneity of the magnetic field to be shielded. Finally, we present experimental results, which show the performance of metamaterial shields.

Citation


Mustafa Boyvat and Christian V. Hafner, "Magnetic Field Shielding by Metamaterials," Progress In Electromagnetics Research, Vol. 136, 647-664, 2013.
doi:10.2528/PIER12121805
http://jpier.org/PIER/pier.php?paper=12121805

References


    1. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, No. 1, 41-48, 2007.
    doi:10.1038/nphoton.2006.49

    2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001.
    doi:10.1126/science.1058847

    3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, Oct. 2000.
    doi:10.1103/PhysRevLett.85.3966

    4. Liu, Z., N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Applied Physics Letters, Vol. 83, No. 25, 5184-5186, Dec. 2003.
    doi:10.1063/1.1636250

    5. Fang, N., Z. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express, Vol. 11, No. 7, 682-687, Apr. 2003.
    doi:10.1364/OE.11.000682

    6. Lagarkov, A. N. and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett., Vol. 92, No. 7, 077401, Feb. 2004.
    doi:10.1103/PhysRevLett.92.077401

    7. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, Apr. 2005.
    doi:10.1126/science.1108759

    8. Lee, H., Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New Journal of Physics, Vol. 7, 255-255, Dec. 2005.
    doi:10.1088/1367-2630/7/1/255

    9. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater., Vol. 7, No. 6, 435-441, Jun. 2008.
    doi:10.1038/nmat2141

    10. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, Jun. 2006.
    doi:10.1126/science.1125907

    11. Raton, B., et al., Power Frequency Magnetic Fields and Public Health, CRC Press, 1995.

    12. Boyvat, M. and C. V. Hafner, "Molding the flow of magnetic field with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
    doi:10.2528/PIER12022010

    13. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, 2009.

    14. Cui, T. J., D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, 2010.

    15. Xu, W., W. J. Padilla, and S. Sonkusale, "Loss compensation in Metamaterials through embedding of active transistor based negative differential resistance circuits ," Opt. Express, Vol. 20, No. 20, 22406-22411, Sep. 2012.
    doi:10.1364/OE.20.022406

    16. Dong, Z.-G., H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, "Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots," Applied Physics Letters, Vol. 96, No. 4, 044104-044104-3, Jan. 2010.
    doi:10.1063/1.3302409

    17. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, Aug. 2010.
    doi:10.1038/nature09278

    18. Soukoulis, C. M. and M. Wegener, "Optical metamaterials --- More bulky and less lossy," Science, Vol. 330, No. 6011, 1633-1634, Dec. 2010.
    doi:10.1126/science.1198858

    19. Jelinek, L. and J. Machac, "An FET-based unit cell for an active magnetic metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 927-930, 2011.
    doi:10.1109/LAWP.2011.2167311

    20. González-Posadas, V., D. Segovia-Vargas, E. Ugarte-Munoz, J. L. Jiménez-Martn, and L. E. García-Munoz, "On the performance of negative impedance converters (NICs) to achieve active metamaterials," ICECom, 2010 Conference Proceedings, 1-4, 2010.

    21. Tretyakov, S. A., "Meta-materials with wideband negative permittivity and permeability," Microwave and Optical Technology Letters, Vol. 31, No. 3, 163-165, 2001.
    doi:10.1002/mop.1387

    22. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B, Vol. 23, No. 3, 434-438, Mar. 2006.
    doi:10.1364/JOSAB.23.000434

    23. Shalaev, V. M., W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, No. 24, 3356-3358, Dec. 2005.
    doi:10.1364/OL.30.003356

    24. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

    25. Sussman-Fort, S. E. and R. M. Rudish, "Non-Foster impedance matching of electrically-small antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2230-2241, Aug. 2009.
    doi:10.1109/TAP.2009.2024494

    26. Boillat, D. O., T. Friedli, and J. W. Kolar, "Electronically controllable impedance for tuning of active metamaterials," IECON 2011 --- 37th Annual Conference on IEEE Industrial Electronics Society, 1335-1341, 2011.
    doi:10.1109/IECON.2011.6119502

    27. Johnson, D. E., Introduction to Filter Theory, Prentice-Hall, 1976.

    28. Bakshi, U. A., Telecommunication Engineering, Technical Publications, 2009.

    29. Shamonina, E. and L. Solymar, "Diamagnetic properties of metamaterials: A magnetostatic analogy," Eur. Phys. J. B, Vol. 41, No. 3, 307-312, Oct. 2004.
    doi:10.1140/epjb/e2004-00322-7