Vol. 137

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-02-19

An Ultra-Low Loss Split Ring Resonator by Suppressing the Electric Dipole Moment Approach

By Lei Zhu, Fan-Yi Meng, Fang Zhang, Jiahui Fu, Qun Wu, Xu Min Ding, and Joshua Le-Wei Li
Progress In Electromagnetics Research, Vol. 137, 239-254, 2013
doi:10.2528/PIER12121703

Abstract

We propose an effective way to realize the ultra-low loss in a split ring resonator (SRR) by suppressing the electric dipole moment approach. To tremendously reduce the loss, the loss mechanism of the SRR is theoretically analyzed in detail. The nonuniform current distribution on the SRR loop results in the residual electric dipole moment and thus brings the high radiation losses. Three different SRR configurations that the lumped capacitor, the distributed capacitor and the dielectric medium are incorporated into the SRR metamaterial are conceived, by which the uniform current distribution can be observed. This leads to in a finite bandwidth deviated from the resonance frequency where the SRR's loss performance dramatically improves owing to suppression of the residual electric dipole moment. The proposed the loss reduction mechanism has potential applications in negative and zero index memataterials, especially at THz frequencies and in the optical regime.

Citation


Lei Zhu, Fan-Yi Meng, Fang Zhang, Jiahui Fu, Qun Wu, Xu Min Ding, and Joshua Le-Wei Li, "An Ultra-Low Loss Split Ring Resonator by Suppressing the Electric Dipole Moment Approach," Progress In Electromagnetics Research, Vol. 137, 239-254, 2013.
doi:10.2528/PIER12121703
http://jpier.org/PIER/pier.php?paper=12121703

References


    1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    3. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.

    4. Meng, F.-Y., Y.-L. Li, K. Zhang, Q. Wu, and J. L.-W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

    5. Burlak, G., "Spectrum of cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.

    6. Li, F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    7. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
    doi:10.2528/PIER11052507

    8. He, X.-J., Y. Wang, J.-M. Wang, and T.-L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

    9. M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
    doi:10.2528/PIER11112301

    10. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
    doi:10.2528/PIER11112605

    11. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
    doi:10.2528/PIER11121402

    12. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
    doi:10.2528/PIER11110506

    13. Chen, H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

    14. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    15. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
    doi:10.2528/PIER11101401

    16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    18. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite media with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    19. Zhou, X., Y. H. Liu, and X. Zhao, "Low losses left-handed materials with optimized electric and magnetic resonance," Applied Physics A, Vol. 98, 643-649, 2010.
    doi:10.1007/s00339-009-5458-x

    20. Garcia-Meca, C., R. Ortuno, R. Salvador, A. Martinez, and J. Marti, "Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths," Optics Express, Vol. 15, 9320-9325, 2007.
    doi:10.1364/OE.15.009320

    21. Zhou, J., Th. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express, Vol. 16, 11147-11152, 2008.
    doi:10.1364/OE.16.011147

    22. Zhao, Y. X., F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, "Optimizing low loss negative index metamaterial for visible spectrum using differential evolution," Optics Express, Vol. 19, 11605-11614, 2011.
    doi:10.1364/OE.19.011605

    23. Bossard, J. A., S. Yun, D. H. Werner, and T. S. Mayer, "Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms," Optics Express, Vol. 17, 14771-14779, 2009.
    doi:10.1364/OE.17.014771

    24. Bratkovsky, A., E. Ponizovskaya, S.-Y. Wang, P. Holmstrm, L. Thylen, Y. Fu, and H. Agren, "A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss," Applied Physics Letters, Vol. 93, 193106, 2008.
    doi:10.1063/1.3013331

    25. Fang, A., Z. X. Huang, T. Koschny, and C. M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Optics Express, Vol. 19, 12688-12699, 2011.
    doi:10.1364/OE.19.012688

    26. Shen, J.-Q., "Gain-assisted negative refractive index in a quantum coherent medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.

    27. Tassin, L. Z., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low loss metamaterials based on classical electromagnetically induced transparency," Physical Review Letters, Vol. 102, 051901, 2009.
    doi:10.1103/PhysRevLett.102.053901

    28. Zhu, L., F. Y. Meng, J. H. Fu, and Q. Wu, "Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes," Journal of Physics D: Applied Physics, Vol. 45, 445105, 2012.
    doi:10.1088/0022-3727/45/44/445105

    29. Zhu, L., F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, "An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency," IEEE Transactions on Magnetics, Vol. 48, 4285-4288, 2012.
    doi:10.1109/TMAG.2012.2200661

    30. Liu, N., L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the drude damping limit," Nature Materials, Vol. 8, 758-762, 2009.
    doi:10.1038/nmat2495

    31. Zhu, L., F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, "Multi-band slow light metamaterial," Optics Express, Vol. 20, 4494-4502, 2012.
    doi:10.1364/OE.20.004494

    32. Zhu, L., L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, "Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application," Applied Optics, Vol. 51, 7794-7799, 2012.
    doi:10.1364/AO.51.007794

    33. Meng, F. Y., F. Zhang, K. Zhang, and Q. Wu, "Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency," IEEE Transactions on Magnetics, Vol. 47, 3347-3350, 2011.
    doi:10.1109/TMAG.2011.2151271

    34. Li, T. Q., H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, "Suppression of radiation loss by hybridization effect in two coupled split-ring resonators," Physical Review B, Vol. 80, 115113, 2009.
    doi:10.1103/PhysRevB.80.115113

    35. Meng, F. Y., J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, "Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions," Journal of Physics D: Applied Physics, Vol. 44, 265402, 2011.
    doi:10.1088/0022-3727/44/26/265402

    36. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Physical Review Letters, Vol. 101, 253903, 2008.
    doi:10.1103/PhysRevLett.101.253903

    37. Tsakmakidis, K. L., M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, "Negative-permeability electromagnetically induced transparent and magnetically active metamaterials," Physical Review B, Vol. 81, 195128, 2010.
    doi:10.1103/PhysRevB.81.195128

    38. Szabo, Z., G.-H. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 2646-2653, 2010.
    doi:10.1109/TMTT.2010.2065310

    39. Erentok, A., et al., "Low frequency lumped element-based negative index metamaterial," Applied Physics Letters, Vol. 91, 184104, 2007.
    doi:10.1063/1.2803771

    40. Ban, Y.-L., J.-H. Chen, S.-C. Sun, J. L.-W. Li, and J.-H. Guo, "Printed wideband antenna with chip-capacitor-loaded inductive strip for LTE/GSM/UMTS WWAN wireless USB dongle applications," Progress In Electromagnetics Research, Vol. 128, 313-329, 2012.

    41. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, 3450, 2004.
    doi:10.1109/MMW.2004.1337766

    42. Gil, M., J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, "Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1296-1304, 2007.
    doi:10.1109/TMTT.2007.897755

    43. Alley, G. D., "Interdigital capacitors and their application to lumped element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 1028-1033, 1970.
    doi:10.1109/TMTT.1970.1127407