Vol. 136
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-17
Design of a Miniaturized Dual-Band Double-Folded Substrate Integrated Waveguide Bandpass Filter with Controllable Bandwidths
By
Progress In Electromagnetics Research, Vol. 136, 211-223, 2013
Abstract
One miniaturized multilayer dual-band bandpass filter (BPF) is developed using standard low temperature co-fired ceramic (LTCC) technology. The filter makes use of four double-folded substrate integrated waveguide (SIW) resonators. Two sets of coupling paths between the source and load are implemented to generate dual-band responses. Utilizing this method, the two passbands can operate at independent frequencies and the bandwidth can be easily controlled. High isolation is obtained between two passbands, and two pairs of transmission zeros close to the passband edges are generated by source-load coupling, resulting in high skirt-selectivity. Good agreement between the simulated and measured results of the filter sample is obtained, with its high electrical performance validated.
Citation
Qiaoli Zhang, Bing-Zhong Wang, Wen-Yan Yin, and Lin-Sheng Wu, "Design of a Miniaturized Dual-Band Double-Folded Substrate Integrated Waveguide Bandpass Filter with Controllable Bandwidths," Progress In Electromagnetics Research, Vol. 136, 211-223, 2013.
doi:10.2528/PIER12121404
References

1. Piloto, A., K. Leahy, B. Flanick, and K. A. Zaki, Waveguide filters having a layered dielectric structures, U.S. Patent 5382931, 1995.

2. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

3. Zhang, Z. G., Y. Fan, Y. J. Cheng, and Y.-H. Zhang, "A novel multilayer dual-mode substrate integrated waveguide complementary ¯lter with circular and elliptic cavities (SICC and SIEC)," Progress In Electromagnetics Research, Vol. 127, 173-188, 2012.
doi:10.2528/PIER12020704

4. Xu, Z. Q., Y. Shi, P. Wang, J. X. Liao, and X. B. Wei, "Substrate integrated waveguide (SIW) filter with hexagonal resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1521-1527, 2012.
doi:10.1080/09205071.2012.703951

5. Cheng, Y. J., "Substrate integrated waveguide frequency-agile slot antenna and its multibeam application," Progress In Electromagnetics Research, Vol. 130, 153-168, 2012.

6. Zhang, Q.-L., W.-Y. Yin, S. He, and L.-S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

7. Chen, G. L., T. L. Owens, and J. H. Whealton, "Theoretical study of the folded waveguide," IEEE Trans. on Plasma Sci., Vol. 16, No. 2, 305-308, 1998.
doi:10.1109/27.3829

8. Hong, J. S., "Compact folded waveguide resonator," IEEE MTT-S Int. Microw. Symp. Dig., 213-216, 2004.

9. Grigoropoulos, N., B. S. Izquierdo, and P. R. Young, "Substrate integrated folded waveguides (SIFW) and filters," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 829-831, 2005.
doi:10.1109/LMWC.2005.860027

10. Che, W. Q., L. Geng, K. Deng, and Y. L. Chow, "Analysis and experiments of compact folded substrate-integrated waveguide," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 1, 88-93, 2008.
doi:10.1109/TMTT.2007.911955

11. Lin, H. H., "Novel folded resonators and filters," IEEE MTT-S Int. Microw. Symp. Dig., 1277-1280, 2007.

12. Alotaibi, S. K. and J. S. Hong, "Novel substrate integrated folded waveguide filter," Microw. Opt. Tech. Lett., Vol. 50, No. 4, 1111-1114, 2008.
doi:10.1002/mop.23272

13. Shen, T. M., T. Y. Huang, W. H. Wang, and R. B. Wu, "Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 7, 1774-1782, 2009.
doi:10.1109/TMTT.2009.2022591

14. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

15. Shen, T. M., T. Y. Hung, and R. B. Wu, "Design of a vertically stacked substrate integrated folded-waveguide resonator filter in LTCC ," Asia-Pacific Microwave Conference, 1-4, 2007.

16. Chen, C.-Y. and C.-C. Lin, "The design and fabrication of a highly compact microstrip dual-band bandpass filter," Progress In Electromagnetics Research, Vol. 112, 299-307, 2011.

17. Kuo, J.-T. and S.-W. Lai, "New dual-band bandpass filter with wide upper rejection band," Progress In Electromagnetics Research, Vol. 123, 371-384, 2012.
doi:10.2528/PIER11112304

18. Zhang, X. Y., C. H. Chan, Q. Xue, and B. J. Hu, "Dual-band bandpass filter with controllable bandwidths using two coupling paths," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 11, 616-618, 2010.
doi:10.1109/LMWC.2010.2066553

19. Dai, G. L., Y. X. Guo, and M. Y. Xia, "Dual-band bandpass filter using parallel short-ended feed scheme," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 325-327, 2010.
doi:10.1109/LMWC.2010.2047517

20. Song, K., Y. Mo, Y. Xia, S. Hu, and Y. Fan, "Compact dual-passband filter using spiral resonators," Progress In Electromagnetics Research Letters, Vol. 34, 187-195, 2012.

21. Yang, R. Y., K. Hon, C. Y. Hung, and C. S. Ye, "Design of dual-band bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

22. Ma, D., Z. Y. Xiao, L. Xiang, X. Wu, C. Huang, and X. Kou, "Compact dual-band bandpass filter using folded SIR with two stubs for WLAN," Progress In Electromagnetics Research, Vol. 117, 357-364, 2011.

23. Zhou, L., S. Liu, H. F. Zhang, X.-K. Kong, and Y.-N. Guo, "Compact dual-band bandpass filter using improved split ring resonators based on stepped impedance resonator," Progress In Electromagnetics Research Letters, Vol. 23, 57-63, 2011.

24. Chen, W.-Y., M.-H. Weng, S.-J. Chang, H. Kuan, and Y.-H. Su, "A new tri-band bandpass filter for GSM, WiMAX and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, 365-381, 2012.
doi:10.2528/PIER11122010

25. Chiou, Y.-C. and J.-T. Kuo, "Planar multiband bandpass filter with multimode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 129-1441, 2011.

26. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 12, 2569-2578, 2007.
doi:10.1109/TMTT.2007.909603

27. Chen, B. J., T. M. Shen, and R. B. Wu, "Dual-band vertically stacked laminated waveguide filter design in LTCC technology," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 6, 1554-1562, 2009.
doi:10.1109/TMTT.2009.2020833

28. Shen, W., W. Y. Yin, and X. W. Sun, "Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 418-420, 2011.
doi:10.1109/LMWC.2011.2158412

29. Wang, R., X. L. Zhou, and L. S. Wu, "A folded substrate integrated waveguide cavity filter using novel negative coupling," Microw. Opt. Tech. Lett., Vol. 51, No. 3, 866-871, 2009.
doi:10.1002/mop.24181

30. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, J. Wiley & Sons Inc., New York, 2001.

31. Amari, S., U. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source/load-multi-resonator coupling," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 8, 1969-1978, 2002.
doi:10.1109/TMTT.2002.801348