Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-27
Compact EBG Structure for Alleviating Mutual Coupling Between Patch Antenna Array Elements
By
Progress In Electromagnetics Research, Vol. 137, 425-438, 2013
Abstract
The periodic structure like electromagnetic band gap (EBG) is a hot research topic in the academia and RF-microwave industry due to their extraordinary surface wave suppression property. This study involved in designing a compact uni-planar type EBG structure for a 2.4 GHz resonant frequency band. Double folded bend metallic connecting lines are successfully utilized to realize a low frequency structure while a size reduction of 61% is achieved compared to the theoretically calculated size. From the transmission response, the surface wave band gap (SWBG) is found to be 1.2 GHz (1.91-3.11 GHz) whereas the artificial magnetic conductor (AMC) characteristic is observed at 3.3 GHz. The FEM based EM simulator HFSS is used to characterize the EBG structure. The SWBG property is utilized for alleviation of mutual coupling between elements of a microstrip antenna array. A 2 x 5 EBG lattice is inserted between the E-plane coupled array which reduced the coupling level by 17 dB without any adverse effect on the radiation performances.
Citation
Mohammad Tariqul Islam, and Md. Shahidul Alam, "Compact EBG Structure for Alleviating Mutual Coupling Between Patch Antenna Array Elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205
References

1. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

2. Gao, M.-J., L.-S. Wu, and J.-F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic bandgap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.
doi:10.2528/PIER12011701

3. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

4. De Paulis, F. and A. Orlandi, "Accurate and efficient analysis of planar electromagnetic band-gap structures for power bus noise mitigation in the GHz band," Progress In Electromagnetics Research B, Vol. 37, 59-80, 2012.
doi:10.2528/PIERB11100402

5. Tomeo-Reyes, I. and E. Rajo-Iglesias, "Comparative study on different HIS as ground planes and its application to low profile wire antennas design," Progress In Electromagnetics Research, Vol. 115, 55-77, 2011.

6. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.

7. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

8. Lin, M.-S., C.-H. Huang, and C.-N. Chiu, "Use of high-impedance screens for enhancing antenna performance with electromagnetic compatibility," Progress In Electromagnetics Research, Vol. 116, 137-157, 2011.

9. Tiang, J.-J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011.

10. Lee, J.-H. and C.-C. Cheng, "Spatial correlation of multiple antenna arrays in wireless communication systems," Progress In Electromagnetics Research, Vol. 132, 347-368, 2012.

11. Quan, X. L., R.-L. Li, J. Y. Wang, and Y. H. Cui, "Development of a broadband horizontally polarized omnidirectional planar antenna and its array for base stations," Progress In Electromagnetics Research, Vol. 128, 441-456, 2012.

12. Wei, K., Z. Zhang, and Z. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.
doi:10.2528/PIER11112101

13. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904

14. Elwi, T. A., H. M. Al-Rizzo, N. Bouaynaya, M. M. Hammood, and Y. Al-Naiemy, "Theory of gain enhancement of UC-PBG antenna structures without invoking Maxwell's equations: An array signal processing approach," Progress In Electromagnetics Research B, Vol. 34, 15-30, 2011.

15. Wang, M., W. Wu, and D. Fang, "Uniplanar single corner-FED dual-band dual-polarization patch antenna array," Progress In Electromagnetics Research Letters, Vol. 30, 41-48, 2012.
doi:10.2528/PIERL11112704

16. Abedin, M. F. and M. Ali, "Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 274-276, 2005.
doi:10.1109/LAWP.2005.854004

17. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

18. Capet, N., C. Martel, J. Sokoloff, and O. Pascal, "Optimum high impedance surface configuration for mutual coupling reduction in small antenna arrays," Progress In Electromagnetics Research B, Vol. 32, 283-297, 2011.
doi:10.2528/PIERB11050506

19. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

20. Lee, J.-H. and Y. L. Chen, "Performance analysis of antenna array beamformers with mutual coupling effects," Progress In Electromagnetics Research B, Vol. 33, 291-315, 2011.
doi:10.2528/PIERB11052802

21. Rahmat-Samii, Y. and F. Yang, Electromagnetic Band Gap Structure in Antenna Engineering, Cambridge University Press, Cambridge, UK, 2009.

22. Wang, T., Y.-Z. Yin, J. Yang, Y.-L. Zhang, and J.-J. Xie, "Compact triple-band antenna using defected ground structure for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 35, 155-164, 2012.

23. Iluz, Z., R. Shavit, and R. Bauer, "Microstrip antenna phased array with electromagnetic bandgap substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1446-1453, Jun. 2004.
doi:10.1109/TAP.2004.830252

24. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1648-1655, Jun. 2008.
doi:10.1109/TAP.2008.923306

25. Chen, Z., Y.-L. Ban, J.-H. Chen, J. L.-W. Li, and Y.-J. Wu, "Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure," Progress In Electromagnetics Research, Vol. 129, 469-483, 2012.

26. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

27. Yuan, C. P. and T.-H. Chang, "Modal analysis of metal-stub photonic band gap structures in a parallel-plate waveguide," Progress In Electromagnetics Research, Vol. 119, 345-361, 2011.
doi:10.2528/PIER11050601

28. Ederra, I., J. C. Iriarte, R. Gonzalo, and P. de Maagt, "Surface waves of ¯nite size electromagnetic band gap woodpile structures," Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011.

29. Li, Y., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 183-190, 2005.

30. Xu, F., Z.-X. Wang, X. Chen, and X.-A. Wang, "Dual band-notched UWB antenna based on spiral electromagnetic-bandgap structure," Progress In Electromagnetics Research B, Vol. 39, 393-409, 2012.
doi:10.2528/PIERB12021607

31. Alam, M. S., M. T. Islam, and N. Misran, "Performance investiga-tion of a uni-planar compact electromagnetic bandgap (UC-EBG) structure for wide bandgap characteristics," Proceedings of the 2012 Asia-Paci¯c Symposium on Electromagnetic Compatibility (APEMC), 637-640, Singapore, May 2012.

32. Yu, A. and X. Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 170-172, 2003.

33. Fei, H., H. Guo, X. Liu, and Y. Wang, "A novel compact EBG structure for mutual coupling reduction in a patch array," PIERS Proceedings, 615-618, Suzhou, China, Sep. 12-16, 2011.

34. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Com-putational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Transactions on Magnetics, Vol. 48, No. 2, 771-774, 2012.
doi:10.1109/TMAG.2011.2172680

35. Elsheakh, D. N., M. F. Iskander, E. A. Abdallah, H. A. Elsadek, and H. Elhenawy, "Microstrip array antenna with new 2D-electromagnetic band gap structure shapes to reduce harmonics and mutual coupling," Progress In Electromagnetics Research C, Vol. 12, 203-213, 2010.
doi:10.2528/PIERC09112008

36. "Mutual coupling reduction in microstrip antennas by using dual layer uniplanar compact EBG (UC-EBG) structure," Proceedings of IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 180-183, 2010.

37. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.

38. Elsheakh, D. M. N., H. A. Elsadek, E. A.-F. Abdallah, H. M. El-Henawy, and M. F. Iskander, "Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures," Progress In Electromagnetics Research Letters, Vol. 23, 109-118, 2011.

39. Aminian, A., A., F. Yang, and Y. Rahmat-Samii, "n-phase reflection and EM wave suppression characteristics of electromagnetic band gap ground planes," Proceedings of the IEEE Antennas and Propagation Society International Symposium, Vol. 4, 430-433, 2003.

40. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322