Vol. 137

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Magnetic Response and Negative Refraction at Optical Frequencies on the Basis of Electronic Transitions in Rare-Earth Ions Doped Crystals

By Xiaojian Fu, Yuanda Xu, and Ji Zhou
Progress In Electromagnetics Research, Vol. 137, 475-485, 2013


Magnetic response based on a two-level magnetic dipole transition in rare earth ions doped crystals was studied. Semi-classic theory and Wigner-Eckart theorem were used to calculate the magnetic permeability. It is found that negative permeability can be attained near the transition frequencies. In order to realize simultaneously negative permittivity and negative permeability, an electric dipole transition at the same frequency was also adopted, and a negative refraction region with a bandwidth of 0.57 MHz is demonstrated in (Yb0.02 Sm0.02Y0.96)3Al5O12 crystal. This explores a new route to obtain magnetic response and negative refraction at optical frequencies with nature-existed materials instead of metamaterials.


Xiaojian Fu, Yuanda Xu, and Ji Zhou, "Magnetic Response and Negative Refraction at Optical Frequencies on the Basis of Electronic Transitions in Rare-Earth Ions Doped Crystals," Progress In Electromagnetics Research, Vol. 137, 475-485, 2013.


    1. Viktor, G. V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968.

    2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

    3. Grzegorczyk, T. M., X. Chen, J. Pacheco, Jr., J. Chen, B. I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83-113, 2005.

    4. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

    6. Xi, S., H. Chen, B. I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.

    7. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE T. Microw. Theory., Vol. 47, 2075-2084, 1999.

    8. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz , "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.

    9. Veselago, V. G. and E. E. Narimanov, "The left hand of brightness: Past, present and future of negative index materials," Nat. Mater., Vol. 5, 759-762, 2006.

    10. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamate-rial with a negative refractive index," Nature, Vol. 455, 376-332, 2008.

    11. Shalaev, V. M., "Optical negative-index metamaterials," Nat. Photon., Vol. 1, 41-48, 2007.

    12. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater., Vol. 7, 31-37, 2008.

    13. Krowne, C. M., "The road to quantum level negative index metamaterials," Waves Random Complex, Vol. 20, 223-250, 2010.

    14. Shen, J. Q., Z. C. Ruan, and S. L. He, "How to realize a negative refractive index material at the atomic level in an optical frequency range," J. Zhejiang Univ.-Sc. A, Vol. 5, 1322-1326, 2004.

    15. Oktel, M. O. and O. E. Mustecaplıoglu, "Electromagnetically induced left-handedness in a dense gas of three-level atoms," Phys. Rev. A, Vol. 70, 053806, 2004.

    16. Shen, J. Q., "Gain-assisted negative refractive index in a quantum coherent medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.

    17. Kussow, A. G. and A. Akyurtlu, "Negative refraction index in the magnetic semiconductor In2-xCrxO3: Theoretical analysis," Phys. Rev. B, Vol. 78, 205202, 2008.

    18. Kussow, A. G. and A. Akyurtlu, "Electromagnetically induced negative refractive index in doped semiconductors at optical frequencies," Int. J. Mod Phys B, Vol. 25, 347-364, 2011.

    19. Wybourne, B. G., Spectroscopic Properties of Rare Earths, John Wiley & Sons, Inc., New York, 1965.

    20. Gschneidner, Jr., K. A. and L. Eyring, Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, North Holland Publishing Company, Amsterdam, 1982.

    21. Thommen, Q. and P. Mandel, "Left-handed properties of erbium-doped crystals," Opt. Lett., Vol. 31, 1803-1805, 2006.

    22. Liu, C. X., J. S. Zhang, J. Y. Liu, and G. Jin, "The electromagnetically induced negative refractive index in the Er3+ : YAlO3 crystal," J. Phys. B: At., Mol. Opt. Phys., Vol. 42, 095402, 2009.

    23. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press & Beijing World Publishing Corporation, Cambridge, 2009.

    24. Krowne, C. M., "Multi-species two-level atomic media displaying electromagnetic left handedness," Phys. Lett. A, Vol. 372, 2304-2310, 2008.

    25. Zare, R. N., Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, New York, 1988.

    26. Wu, C. T., Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, "Diode-pumped single frequency Tm : YAG laser at room temperature," Laser Phys. Lett., Vol. 5, 793-796, 2008.

    27. Lacovara, P., H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb : YAG laser," Opt. Lett., Vol. 16, 1089-1091, 1991.

    28. Judd, B. R., "Optical absorption intensities of rare-earth ions," Phys. Rev., Vol. 127, 750-761, 1962.

    29. Ofelt, G. S., "Intensities of crystal spectra of rare-earthions," J. Chem. Phys., Vol. 37, 511-520, 1962.

    30. Fu, X. J., Y. D. Xu, and J. Zhou, "Abnormal dielectric response in an optical range based on electronic transition in rare-earth-ion-doped crystals," Chin. Phys. Lett., Vol. 29, 027805, 2012.

    31. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

    32. Kaczkan, M., Z. Frukacz, and M. Malinowski, "Infrared-to-visible wavelength upconversion in Sm3+-activated YAG crystals," J. Alloy. Compd., Vol. 323-324, 736-739, 2001.

    33. Malinowski, M., R. Wolski, Z. Frukacz, T. Lukasiewicz, and Z. Luczynski, "Spectroscopic studies of YAG: Sm3+ crystals," J. Appl. Spectrosc., Vol. 62, 840-843, 1995.

    34. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, San digo, CA, 1998.

    35. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    36. Aslam, M. I. and D. O. Gueney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203-217, 2013.

    37. Guo, J., Y. Xiang, X. Dai, and S. Wen, "Enhanced nonlinearities in double-fishnet negative-index photonic metamaterials," Progress In Electromagnetics Research, Vol. 136, 269-282, 2013.