Vol. 135
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-25
Differential Transformer Using Bonder-Wires and Patterns on a Printed Circuit Board for RF Circuit Applications
By
Progress In Electromagnetics Research, Vol. 135, 363-371, 2013
Abstract
A transformer that uses bonder-wires and printed circuit board (PCB) patterns is proposed for RF circuit applications. The proposed transformer can be constructed without any additional processes. The PCB patterns are implemented using a typical FR4 substrate and gold bonder wires are used. The self-inductance of the transformer can be controlled according to the number of unit-transformers. Although the size of the transformer is larger than that of a fully-integrated transformer, the maximum available gain (MAG) is almost identical to that of other-types of transformers, which require additional cost or bulky size to obtain sufficient inductance. Additionally, we proposed a method to design the transformer with a symmetric structure for differential RF CMOS circuit applications. The transformer can applied to GHz-order RF CMOS circuits as an input and output matching component with low loss characteristics.
Citation
Byungjoo Kang, Hoyong Hwang, and Changkun Park, "Differential Transformer Using Bonder-Wires and Patterns on a Printed Circuit Board for RF Circuit Applications," Progress In Electromagnetics Research, Vol. 135, 363-371, 2013.
doi:10.2528/PIER12120402
References

1. Zhurbenko, , V. and K. Kim, "Nonsynchronous noncommensurate impedance transformers," Progress In Electromagnetics Research B, Vol. 42, 405-424, 2012.
doi: --- Either ISSN or Journal title must be supplied.

2. Zheng, , X., Y. Liu, S. Li, C. Yu, Z. Wang, and J. Li, , "A dual-band impedance transformer using pi-section structure for frequency-dependent complex loads," Progress In Electromagnetics Research C, Vol. 32, 11-26, , 2012.

3. Resley, , L., H. Song, and , "Ka-band klopfenstein tapered impedance transformer for radar applications," Progress In Electromagnetics Research C, Vol. 27, 253-263, 2012.
doi:10.2528/PIERC11112310

4. Li, , S., B. Tang, Y. Liu, S. Li, C. Yu, and Y. Wu, "Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power ampliers design ," Progress In Electromagnetics Research, Vol. 131, 195-210, 2012.

5. Wu, S.-M., C.-T. Kuo, and C.-H. Chen, "Very compact full differential bandpass filter with transformer integrated using integrated passive device technology," Progress In Electromagnetics Research, Vol. 113, 251-267, 2011.

6. Shamaileh, , K. A. A., A. M. Qaroot, and N. I. Dib, "Non-uniform transmission line transformers and their application in the design of compact multi-band bagley power dividers with harmonics suppression," Progress In Electromagnetics Research, Vol. 113, 269-284, 2011.

7. Zhang, , B., Y.-Z. Xiong, L. Wang, S. Hu, and L.-W. Li, "3D transformer design by through silicon via technology and its application for circuit design," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17--18, 2513-2521, January 2011.
doi:10.1163/156939311798806112

8. Wang, , S., Z.-K. Li, and , "A 7.9--12.1-GHz CMOS LNA employing noise-suppressed and gain-flattened techniques," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14--15, 1993-2000, , October 2012.
doi:10.1080/09205071.2012.724154

9. Lee, , C., J. Park, and C. Park, , "X-band CMOS power amplifier using mode-locking method for sensor applications," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 5--6, 633-604, 2012.
doi:10.1080/09205071.2012.710783

10. Seo, , D., C. Lee, J. Park, and C. Park, "Power detection method using a virtual ground node for RF CMOS power amplifier applications," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17--18, 2341-2347, 2012.
doi:10.1080/09205071.2012.734033

11. Park, , J., C. Lee, and C. Park, "A brief review: Stage- convertible power amplifier using differential line inductor," Wireless Engineering and Technology, Vol. 3, No. 4, 189-194, October 2012.
doi:10.4236/wet.2012.34027

12. Wong, , S.-K., F. Kung, S. Maisurah, and M. N. B. Osman, "A wimedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research , Vol. 112, 329-347, 2011.

13. Wang, , S., R.-X. Wang, and , "A tunable bandpass filter using Q-enhanced and semi-passive inductors at S-band in 0.18-mu M CMOS," Progress In Electromagnetics Research B, Vol. 28, 55-73, 2011.

14. Chien, , W.-C., C.-M. Lin, Y.-H. Chang, and Y.-H. Wang, "A 9{21 GHz miniature monolithic image reject mixer in 0.18-mu M CMOS technology," Progress In Electromagnetics Research Letters, Vol. 17, 105-114, 2010.
doi:10.2528/PIERL10072602

15. Park, , C., Y. Kim, H. Kim, and S. Hong, "A 1.9-GHz CMOS power ampli¯er using three-port asymmetric transmission line transformer for a polar transmitter," IEEE Trans. Microwave Theory and Tech., Vol. 55, No. 2, 230-238, February 2007.
doi:10.1109/TMTT.2006.889152

16. Park, , C., D. H. Lee, J. Han, and S. Hong, "Tournament-shaped magnetically coupled power-combiner architecture for RF CMOS power amplifier," IEEE Trans. Microwave Theory and Tech., Vol. 55, No. 10, 2034-2042, , October 2007.
doi:10.1109/TMTT.2007.905482

17. Kang, , W., H. Wang, C. Miao, C. Tan, and W. Wu, "A high performance balun bandpass FIlter with very simple structure ," Progress In Electromagnetics Research Letters, Vol. 31, , 169-176, 2012.
doi:10.2528/PIERL12030406

18. Park, , C., J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power ampli¯er using a dual-primary transformer with improved e±ciency in the low power region ," IEEE Trans. Microwave Theory and Tech., Vol. 56, No. 4, 782-792, April 2008.
doi:10.1109/TMTT.2008.918152

19. Jang, J., C. Park, H. Kim, and S. Hong, "A CMOS RF power ampli¯er using an off-chip transmission line transformer with 62% PAE," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, 385-387, May 2007.
doi:10.1109/LMWC.2007.895723

20. Park, , C., C. Seo, and , "A 1.8-GHz CMOS class-E power amplifier with an integrated passive transformer," IET Circuits, Devices & Systems, Vol. 4, No. 6, 479-485, , November 2010.
doi:10.1049/iet-cds.2010.0014

21. Lee, , H., C. Park, and S. Hong, "A quasi-four-pair class-E CMOS RF power amplifier with an integrated passive device transformer," IEEE Trans. Microwave Theory and Tech., Vol. 57, No. 4, 752-759, April 2009.
doi:10.1109/TMTT.2009.2015122