Vol. 137

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-02-22

A Novel Sparse Stepped Chaotic Signal and its Compression Based on Compressive Sensing

By Jiefang Yang and Yunhua Zhang
Progress In Electromagnetics Research, Vol. 137, 335-357, 2013
doi:10.2528/PIER12120106

Abstract

We propose a novel signal model by combining the sparse stepped frequency signals with chaotic signals, i.e. the sparse stepped chaotic signal (SSCS) model, as well as the corresponding compression algorithm based on compressed sensing. In SSCS, the chaotic signals are modulated to sparse stepped frequencies to compose a transmitting burst. When receiving, the echo signals are demodulated to the baseband and then can be sampled directly at a rate much lower than the Nyquist rate determined by the bandwidth of chaotic signal of each subpulse. Compared with radars using conventional stepped frequency waveforms, the SSCS radar can transmit fewer subpulses in a burst and directly use lower speed ADC next to the receiver. Both simulated and real radar data are processed to demonstrate the effectiveness of the proposed SSCS as well as the compression algorithm by which high resolution range profiles are very well reconstructed.

Citation


Jiefang Yang and Yunhua Zhang, "A Novel Sparse Stepped Chaotic Signal and its Compression Based on Compressive Sensing," Progress In Electromagnetics Research, Vol. 137, 335-357, 2013.
doi:10.2528/PIER12120106
http://jpier.org/PIER/pier.php?paper=12120106

References


    1. Levanon, N., "Stepped-frequency pulse-train radar signal," IEE Proc-Radar Sonar Navigation, Vol. 149, No. 6, 297-309, 2002.
    doi:10.1049/ip-rsn:20020432

    2. Levanon, N. and E. Mozeson, "Nullifying ACF grating lobes in stepped-frequency train of LFM pulses," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 2, 694-703, 2003.
    doi:10.1109/TAES.2003.1207275

    3. Zhang, Q. and Y.-Q. Jin, "Aspects of radar imaging using frequency-stepped chirp signals," Eurasip Journal on Applied Signal Processing, Vol. 2006, No. 13, 1-8, 2006.

    4. Zhang, Y. H., H. B. Li, and J. Wu, "Subaperture processing method for stepped frequency chirp signal," Aerospace Electronics Information Engineering and Control, Vol. 28, No. 1, 1-6, 2006.

    5. Liu, G. S., H. Gu, X. H. Zhu, and W. M. Su, "The present and the uture of random signal radars," IEEE Aerospace and Electronic Systems Magazine, Vol. 12, No. 10, 35-40, 1997.
    doi:10.1109/62.624326

    6. Lukin, K. A. and R. M. Narayanan, "Fifty years of noise radar," Seventh International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 1-3, 2010.
    doi:10.1109/MSMW.2010.5546159

    7. Narayanan, R. M., Y. Xu, P. D. Hoffmeyer, and J. O. Curtis, "Design, performance, and applications of a coherent ultra-wideband random noise radar," Optical Engineering, Vol. 37, No. 6, 1855-1869, 1998.
    doi:10.1117/1.601699

    8. Narayanan, R. M., "Through-wall radar imaging using uwb noise waveforms," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 345, No. 6, 659-678, 2008.
    doi:10.1016/j.jfranklin.2008.03.004

    9. Ashtari, A., et al., "Radar signal design using chaotic signals," 2007 International Waveform Diversity & Design Conference, 353-357, 2007.
    doi:10.1109/WDDC.2007.4339442

    10. Ding, K. and R. Yang, "Point target imaging simulation using chaotic signals," 2005 IEEE International Radar Conference Record, 847-850, 2005.
    doi:10.1109/RADAR.2005.1435945

    11. Flores, B. C., E. A. Solis, and G. Thomas, "Assessment of chaos-based FM signals for range-doppler imaging," IEE Proceedings - Radar Sonar and Navigation, Vol. 150, No. 4, 313-322, 2003.
    doi:10.1049/ip-rsn:20030728

    12. Wang, H. and J. D. Hu, "The improved logistic-map chaotic spread spectrum sequences," Journal of China Institute of Communications, Vol. 18, No. 8, 71-77, 1997.

    13. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
    doi:10.1109/MSP.2007.914731

    14. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
    doi:10.1109/TIT.2005.862083

    15. Candes, E. J. and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Transactions on Information Theory, Vol. 52, No. 12, 5406-5425, 2006.
    doi:10.1109/TIT.2006.885507

    16. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
    doi:10.1109/TIT.2006.871582

    17. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," 2007 IEEE Radar Conference, 128-133, 2007.
    doi:10.1109/RADAR.2007.374203

    18. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, 2009.
    doi:10.1109/TSP.2009.2014277

    19. Ender, J. H. G., "On compressive sensing applied to radar," Signal Processing, Vol. 90, 1402-1414, 2010.
    doi:10.1016/j.sigpro.2009.11.009

    20. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
    doi:10.2528/PIER10080805

    21. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

    22. Zhang, L., Z. J. Qiao, and M. D. Xing, "High-resolution ISAR imaging with sparse stepped-frequency waveforms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 11, 4630-4651, 2011.
    doi:10.1109/TGRS.2011.2151865

    23. Zhu, F., Q. Zhang, Q. Lei, and Y. Luo, "Reconstruction of moving target's HRRP using sparse frequency-stepped chirp signal," IEEE Sensors Journal, Vol. 11, No. 10, 2327-2334, 2011.
    doi:10.1109/JSEN.2011.2136375

    24. Yu, L. J. and Y. H. Zhang, "Random step frequency CSAR imaging based on compressive sensing," Progress In Electromagnetics Research C, Vol. 32, 81-94, 2012.

    25. Zhang, L., et al., "High-resolution ISAR imaging by exploiting sparse apertures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 997-1008, 2012.
    doi:10.1109/TAP.2011.2173130

    26. Alonso, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4285-4295, 2010.
    doi:10.1109/TGRS.2010.2051231

    27. Xie, X. C. and Y. H. Zhang, "2D radar imaging scheme based on compressive sensing technique," Journal of Electronics & Information Technology, Vol. 32, No. 5, 1234-1238, 2010.

    28. Chen, X. W., Y. H. Zhang, and X. K. Zhang, "FPGA based realization of AIC for applying CS to radar," Progress In Electromagnetics Research C, Vol. 19, 207-222, 2011.

    29. Li, J., S. S. Zhang, and J. F. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
    doi:10.2528/PIER12021307

    30. Liu, Z., X. Z. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.

    31. Jiang, H., H., Y. Lin, B. Zhang, and H. Wen, "Random noise imaging radar based on compressed sensing," Journal of Electronics & Information Technology, Vol. 33, No. 2, 418-423, 2011.
    doi:10.3724/SP.J.1146.2010.00380

    32. Shastry, M. C., R. M. Narayanan, and M. Rangaswamy, "Compressive radar imaging using white stochastic waveforms," 2010 5th International Waveform Diversity and Design Conference, 000090-000094, 2010.
    doi:10.1109/WDD.2010.5592367

    33. He, Y. P., K. R. Wang, J. D. Zhang, and X. H. Zhu, "Compressive sensing based pseudo-random multi-phase CW radar," Journal of Electronics & Information Technology, Vol. 33, No. 3, 418-423, 2011.
    doi:10.3724/SP.J.1146.2010.00380

    34. Zhu, F., Q. Zhang, W. Hong, and F. F. Gu, "Sparse imaging method with strip-map random noise radar based on compressive sensing," Systems Engineering & Electronics, Vol. 34, No. 1, 56-63, 2012.

    35. Bao, Z., M. D. Xing, and T. Wang, Radar Imaging Technology, Publishing House of Electronics Industry, Beijing, 2005.

    36. Zhai, W. S. and Y. H. Zhang, "Application of super-SVA to stepped-chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 71-82, 2011.

    37. Cumming, I. and F. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Boston, MA, 2005.

    38. Zhang, X. K. and Y. H. Zhang, "High resolution moving train imaging experiments with stepped-frequency radar system," 2010 8th European Conference on Synthetic Aperture Radar, 1-4, 2010.