Vol. 136

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Finite-Boundary Bowtie Aperture Antenna for Trapping Nanoparticles

By Huapeng Ye, Haifeng Wang, Swee Ping Yeo, and Cheng-Wei Qiu
Progress In Electromagnetics Research, Vol. 136, 17-27, 2013


We have found that a single finite-boundary bowtie aperture (FBBA) antenna with gap separation of 10 nm between its tips is capable of confining the electric field to a 18 nm X 18 nm region (λ/39.4) and enhancing its near-field intensity by 365-fold at 5 nm beneath the gold film enhancing its near-field intensity by 1, 800-fold inside the gap. The FBBA antenna is thus able to provide enhanced trapping potential by virtue of such extraordinarily high (but exponentially decaying) optical near-fields. We have been able to show that 12 nm gold nanoparticles can, in principle, be trapped by the FBBA antenna with 20 nm gap separation; stable trapping is assured where the trapping potential is found to be several times higher than Brownian-motion potential in water. In addition to trapping nanoparticles, this simple but efficient FBBA antenna may find ready application in near-field optical data storage.


Huapeng Ye, Haifeng Wang, Swee Ping Yeo, and Cheng-Wei Qiu, "Finite-Boundary Bowtie Aperture Antenna for Trapping Nanoparticles," Progress In Electromagnetics Research, Vol. 136, 17-27, 2013.


    1. Novotny, L. and N. van Hulst, "Antennas for light," Nat. Photonics, Vol. 5, 83-90, 2011.

    2. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.

    3. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surface as a bridge linking propagating waves and surface waves," Nat. Materials, Vol. 11, 426-431, 2012.

    4. Navarro-Cia, M. and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS Nano, Vol. 6, 3537-3544, 2012.

    5. Aouani, H., M. Navarro-Cia, M. Rahmani, T. Sidiropoulos, M. Hong, R. Oulton, and S. A. Maier, "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.

    6. Schuller, J. A., T. Taubner, and M. L. Brongersma, "Optical antenna thermal emitters," Nat. Photonics, Vol. 18, 658-661, 2009.

    7. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozeh Kanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.

    8. Mortazavi, D., A. Z. Kouzani, and K. C. Vernon, "A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks," Progress In Electromagnetics Research, Vol. 130, 429-446, 2012.

    9. Cao, L., J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, "Resonant germanium nanoantenna photodetectors," Nano Lett., Vol. 10, 1229-1233, 2010.

    10. Gao, H., K. Li, F. Kong, H. Xie, and J. Zhao, "Optimizing nano-optical antenna for the enhancement of spontaneous emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.

    11. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, K. C. Toussaint, and Jr., "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting ," Nano Lett., Vol. 12, 796-801, 2012.

    12. Pan, L., Y. Park, E. Ulin-Avila, S. Xiong, D. B. Bogy, and X. Zhang, "Maskless plasmonic lithography at 22nm resolution," Scientific Reports, Vol. 1, Article No. 175, 2011, DOI: 10.1038/srep00175.

    13. Wang, H., L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. C. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.

    14. Ashkin, A., J. M. Dziedzic, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett., Vol. 11, 288, 1986.

    15. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin Heidelberg, New York, 1988.

    16. Wang, H., et al., "Fighting against diffraction: Apodization and near field diffraction structures," Laser Photonics Rev., 1-39, 2011.

    17. Wang, H., C. T. Chong, and L. Shi, "Optical antennas and their potential applications to 10Terabit/in2 recording," IEEE: Optical Data Storage Meeting, 16-18, 2009.

    18. Novotny, L. and B. Hecht, Principle of Nano-optics,, Cambridge University Press, 2006.

    19. Chu, S., et al., "Cooling and trapping of neutral atoms," Phys. Rev. Lett., Vol. 57, 314, 1986.

    20. Ashkin, A., J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature, Vol. 330, 769, 1987.

    21. Ashkin, A. and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, Vol. 235, 1517, 1987.

    22. Yang, A. H. J., M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, 71, 2009.

    23. Lumerical Solutions, Inc., http://www.lumerical.com.

    24., Lumerical Solutions, Inc., http://www.lumerical.com/solutions/in-novation/fdtd multicoe±cient material modeling.html.

    25. Terris, B. D., H. J. Mamin, and D. Rugar, "Nearfield optical data storage," Appl. Phys. Lett., Vol. 68, 141, 1996.

    26. Leen, J. B., P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, "Near-field optical data storage using C-apertures," Appl. Phys. Lett., Vol. 97, 073111, 2010.

    27. Da Costa, K. Q. and V. A. Dmitriev, "Bowtie nanoantennas with polynomial sides in the excitation and emission regimes," Progress In Electromagnetics Research B, Vol. 32, 57-73, 2011.

    28. Kessentini, S. and D. Barchiesi, "Effect of gap shape on the spectral response and field enhancement of dimer-based biosensor," PIERS Proceedings, 24-28, Moscow, Russia, Aug. 19-23, 2012.

    29. Yang, X., et al., "Optical force in hybrid plasmonic waveguides," Nano Lett., Vol. 11, 321-328, 2011.

    30. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.

    31. Ordal, M. A., et al., "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt., Vol. 22, 1099-1117, 1983.