Vol. 136

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-01-19

Magnetic Field of Tubular Linear Machines with Dual Halbach Array

By Liang Yan, Lei Zhang, Tianyi Wang, Zongxia Jiao, Chin-Yin Chen, and I-Ming Chen
Progress In Electromagnetics Research, Vol. 136, 283-299, 2013
doi:10.2528/PIER12110302

Abstract

Permanent magnet (PM) array affects flux field distribution of electromagnetic linear machine significantly. A novel dual Hal-bach array is proposed in this paper to enhance flux density in the air gap, and thus to improve output performance of linear machines. Magnetic field in the three-dimensional (3D) space of a tubular linear machine with dual Halbach array is formulated based on Laplace's and Poisson's equations. Numerical result from finite element method is employed to simulate and observe the flux distribution in the machine. A research prototype and a testbed are developed, and experiments are conducted to validate the analytical models. The study is useful for analysis and design optimization of electromagnetic linear machines.

Citation


Liang Yan, Lei Zhang, Tianyi Wang, Zongxia Jiao, Chin-Yin Chen, and I-Ming Chen, "Magnetic Field of Tubular Linear Machines with Dual Halbach Array," Progress In Electromagnetics Research, Vol. 136, 283-299, 2013.
doi:10.2528/PIER12110302
http://jpier.org/PIER/pier.php?paper=12110302

References


    1. Stumberger, G., M. T. Aydemir, D. Zarko, and T. A. Lipo, "Design of a linear bulk superconductor magnet synchronous motor for electromagnetic aircraft launch systems," IEEE Transactions on Applied Superconductivity, Vol. 14, No. 1, 54-62, 2004.
    doi:10.1109/TASC.2004.824342

    2. Kou, B. Q., X. Z. Huang, H. X. Wu, and L. Y. Li, "Thrust and thermal characteristics of electromagnetic launcher based on permanent magnet linear synchronous motors," IEEE Transactions on Magnetics, Vol. 45, No. 1, 358-362, 2009.
    doi:10.1109/TMAG.2008.2008883

    3. Thornton, R., M. T. Thompson, B. M. Perreault, and J. R. Fang, "Linear motor powered transportation," Proceedings of the IEEE, Vol. 97, No. 11, 1754-1757, 2009.
    doi:10.1109/JPROC.2009.2030228

    4. Yan, L. G., "The linear motor powered transportation development and application in China," Proceedings of the IEEE, Vol. 97, No. 11, 1872-1880, 2009.
    doi:10.1109/JPROC.2009.2030245

    5. Yamada, H., M. Yamaguchi, M. Karita, Y. Matsuura, and S. Fukunaga, "Acute animal experiment using a linear motor-driven total artificial heart," IEEE Translation Journal on Magnetics in Japan, Vol. 9, No. 6, 90-97, 1994.
    doi:10.1109/TJMJ.1994.4565963

    6. Yamada, H., M. Yamaguchi, K. Kobayashi, Y. Matsuura, and H. Takano, "Development and test of a linear motor-driven total artificial heart," IEEE Engineering in Medicine and Biology Magazine, Vol. 14, No. 11, 84-90, 1995.
    doi:10.1109/51.340753

    7. Mohammadpour, A., A. Gandhi, and L. Parsa, "Winding factor calculation for analysis of back EMF waveform in air-core permanent magnet linear synchronous motors," IET Electric Power Applications, Vol. 6, No. 5, 253-259, 2012.
    doi:10.1049/iet-epa.2011.0292

    8. Wang, J. B. and D. Howe, "Design optimization of radially magnetized, iron-cored, tubular permanent-magnet machines and drive systems," IEEE Transactions on Magnetics, Vol. 40, No. 5, 3262-3277, 2004.
    doi:10.1109/TMAG.2004.833424

    9. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
    doi:10.2528/PIER11090402

    10. Wang, J., G. W. Jewell, and D. Howe, "A general framework for the analysis and design of tubular linear permanent magnet machines ," IEEE Transactions on Magnetics, Vol. 35, No. 3, 1986-2000, 1999.
    doi:10.1109/20.764898

    11. Fang, J. R., D. B. Montgomery, and L. Roderick, "A novel mag pipe pipeline transportation system using linear motor drives," Proceedings of the IEEE, Vol. 97, No. 11, 1848-1855, 2009.
    doi:10.1109/JPROC.2009.2030241

    12. Gurol, H., "General atomics linear motor applications: Moving towards deployment," Proceedings of the IEEE, Vol. 97, No. 11, 1864-{1871, 2009.
    doi:10.1109/JPROC.2009.2030244

    13. Torkaman, H. and E. Afjei, "Magnetostatic field analysis regarding the effcts of dynamic eccentricity in switched reluctance motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
    doi:10.2528/PIERM09060205

    14. Torkaman, H. and E. Afjei, "Comparison of two types of dual layer generator in field assisted mode utilizing 3D-FEM and experimental verification," Progress In Electromagnetics Research B, Vol. 23, 293-309, 2010.
    doi:10.2528/PIERB10060808

    15. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
    doi:10.2528/PIER12010407

    16. Jian, L. and K.-T. Chau, "Design and analysis of a magnetic-geared electronic-continuously variable transmission system using finite element method," Progress In Electromagnetics Research, Vol. 107, 47-61, 2010.
    doi:10.2528/PIER10062806

    17. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
    doi:10.2528/PIER10092303

    18. Lecointe, J. P., B. Cassoret, and J.-F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Electromagnetics Research, Vol. 112, 125-137, 2011.

    19. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive ," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
    doi:10.2528/PIER11110405

    20. Mahmoudi, A., S. Kahourzade, N. A. Rahim, and W. P. Hew, "Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 124, 383-404, 2012.
    doi:10.2528/PIER11122501

    21. Musolino, A., R. Rizzo, and E. Tripodi, "Tubular linear induction machine as a fast actuator: Analysis and design criteria," Progress In Electromagnetics Research, Vol. 132, 603-619, 2012.

    22. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012.

    23. Youn, H. K., S. J. Chang, K. Sol, D. C. Yon, and L. Ju, "Analysis of hybrid stepping motor using 3D equivalent magnetic circuit network method based on trapezoidal element," Journal of Applied Physics, Vol. 91, No. 10, 8311-8313, 2002.
    doi:10.1063/1.1456046

    24. Amrhein, M. and P. T. Krein, "Induction machine modeling approach based on 3-D magnetic equivalent circuit framework," IEEE Transactions on Energy Conversion, Vol. 25, No. 2, 339-347, 2010.
    doi:10.1109/TEC.2010.2046998

    25. Liu, C. and K.-T. Chau, "Electromagnetic design and analysis of double-rotor flux-modulated permanent-magnet machines," Progress In Electromagnetics Research, Vol. 131, 81-97, 2012.

    26. TheWolfram functions site, 2012, http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/introductions/Struves/01/.