Vol. 135
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-19
Estimation of the Atmospheric Duct from Radar Sea Clutter Using Artificial Bee Colony Optimization Algorithm
By
Progress In Electromagnetics Research, Vol. 135, 183-199, 2013
Abstract
In this study, the Artificial Bee Colony Optimization (ABCO) algorithm has been proposed to estimate the atmospheric duct in maritime environment. The radar sea clutter power is calculated by the parabolic equation method. In order to validate the accuracy and robustness of ABCO algorithm, the experimental and simulation study are respectively carried out in the current research. In the simulation study, the statistical analysis of the estimation results in term of the mean squared error (MSE), mean absolute deviation (MAD) and mean relative error (MRE) are presented to analyze the optimization performance with different noise standard deviation, and the comparative study of the performance of ABCO and particle swarm optimization (PSO) algorithm are also shown. The investigation presented indicate that the ABCO algorithm can be accurately and effectively utilized to estimate the evaporation duct and surface-based duct using refractivity from clutter (RFC) technique in maritime environment. In addition, the performance of ABCO algorithm is clearly superior to that of the PSO algorithm according to the statistical analysis results, especially for the four-parameter surface-based duct estimation.
Citation
Chao Yang, "Estimation of the Atmospheric Duct from Radar Sea Clutter Using Artificial Bee Colony Optimization Algorithm," Progress In Electromagnetics Research, Vol. 135, 183-199, 2013.
doi:10.2528/PIER12110104
References

1. Yardim, , C., P. Gerstoft, and W. S. Hodgkiss, "Estimation of radio refractivity from radar clutter using bayesian monte carlo analysis," IEEE Trans. on Antennas and Propag., Vol. 54, No. 4, 1318-1327, 2006.
doi:10.1109/TAP.2006.872673

2. Yardim, , C., P. Gerstoft, and W. S. Hodgkiss, "Tracking refractivity from clutter using kalman and particle filters," IEEE Trans. on Antennas and Propag., Vol. 56, No. 4, 1058-1070, 2008.
doi:10.1109/TAP.2008.919205

3. Yardim, , C., P. Gerstoft, and W. S. Hodgkiss, "Statistical maritime radar duct estimation using a hybrid genetic algorithms --- Markov chain Monte Carlo method," Radio Sci., , Vol. 42-RS3014, 2007.

4. Gerstoft, , P., L. T. Rogers, J. L. Krolik, and W. S. Hodgkiss, "Inversion for refractivity parameters from radar sea clutter," Radio Sci., Vol. 38, No. 3, 1-22, 2003..
doi:10.1029/2002RS002640

5. Karimian, , A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, "Refractivity estimation from sea clutter: An invited review," Radio Sci., Vol. 46, No. RS6013, 2011.

6. Roger, , L. T., M. Jablecki, and , "Posterior distributions of a statistic of propagation loss inferred from radar sea clutter," Radio Sci., Vol. 40, No. RS6005, , 2005.

7. Vasudevan, , S., R. H. Anderson, S. Kraut, P. Gerstoft, L. T. Rogers, and J. L. Krolik, "Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter," Radio Sci.,, Vol. 42, No. RS2104, , 2007.

8. Douvenot, , R., V. Fabbro, P. Gerstoft, C. Bourlier, and J. Saillard, "A duct mapping method using least squares support vector machines," Radio Sci., , Vol. 43, No. RS6005, 2008..

9. Yardim, , C., P. Gerstoft, and W. S. Hodgkiss, "Sensitivity analysis and performance estimation of refractivity from clutter techniques," Radio Sci., Vol. 44, No. RS1008, 2009.

10. Zhao, , X. F., S. X. Huang, and H. D. Du, "Theoretical analysis and numerical experiments of variational adjoint approach for refractivity estimation," Radio Sci., Vol. 46, No. RS1006, 2011.

11. Huang, , S. X., X. F. Zhao, and Z. Sheng, , "Refractivity estimation from radar sea clutter," Chin. Phys. B,, Vol. 18, No. 11, 5084-5090, 2011.

12. Wang, , B., Z.-S. Wu, Z. Zhao, and H.-G. Wang, , "Retrieving evap-oration duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm," Progress In Electromagnetics Research M, Vol. 9, 79-91, 2009.
doi:10.2528/PIERM09090403

13. Zhang, , J. P., Z. S. Wu, Q. L. Zhu, and B. Wang, A four-, "A four-parameter M-prodle model for the evaporation duct estimation from radar clutter," Progress In Electromagnetics Research,, Vol. 114, 353-368, 2011.

14. Zhang, , J.-P., Z.-S. Wu, Y.-S. Zhang, and B. Wang, "Evaporation duct retrieval using changes in radar sea clutter power versus receiving height," Progress In Electromagnetics Research,, Vol. 126, 555-571, 2012.
doi:10.2528/PIER11121307

. Zhang, , S., S.-X. Gong, Y. Guan, P.-F. Zhang, and Q. Gong, "A novel IGA-EDSPSO hybrid algorithm for the synthesis of sparse arrays," Progress In Electromagnetics Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIER08120806