Vol. 134
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-21
Hierarchical Interpolative Decomposition Multilevel Fast Multipole Algorithm for Dynamic Electromagnetic Simulations
By
Progress In Electromagnetics Research, Vol. 134, 79-94, 2013
Abstract
A hierarchical interpolative decomposition multilevel fast multipole algorithm (ID-MLFMA) is proposed to handle multiscale, dynamic electromagnetic problems. The hierarchical scheme to conduct the ID skeletonization and to implement the matrix vector multiplication is discussed. A strategy to improve the efficiency of ID skeletonization is developed. The hierarchical ID-MLFMA are investigated by numerical experiments on complex targets, demonstrating the capability of the hierarchical ID-MLFMA.
Citation
Xiao-Min Pan, and Xin-Qing Sheng, "Hierarchical Interpolative Decomposition Multilevel Fast Multipole Algorithm for Dynamic Electromagnetic Simulations," Progress In Electromagnetics Research, Vol. 134, 79-94, 2013.
doi:10.2528/PIER12101001
References

1. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propag. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

2. Chew, W. C., J. M. Jin, E. Michielssen, and J. Song, Fast Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

3. Yuan, N., T. S. Yeo, X. C. Nie, L. W. Li, and Y. B. Gan, "Analysis of scattering from composite conducting and dielectric targets using the precorrected-FFT algorithm," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 3, 499-515, 2003.
doi:10.1163/156939303767869026

4. Garcia, E., C. Delgado, L. Lozano, I. Gonzalez-Diego, and M. F. Catedra, "An efficient hybrid-scheme combining the characteristic basis function method and the multilevel fast multipole algorithm for solving bistatic RCS and radiation problems," Progress In Electromagnetics Research B, Vol. 34, 327-343, 2011.

5. Lai, B., H. B. Yuan, and C.-H. Liang, "Analysis of nurbs surfaces modeled geometries with higher-order mom based AIM," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 683-691, 2011.
doi:10.1163/156939311794827285

6. Pan, X.-M., W.-C. Pi, and X.-Q. Sheng, "On openmp parallelization of the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 112, 199-213, 2011.

7. Shao, H., H., J. Hu, Z.-P. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.

8. Ergul, O., "Parallel implementation of MLFMA for homogeneous objects with various material properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2011.
doi:10.2528/PIER11092501

9. Pan, X. M., W. C. Pi, M. L. Yang, Z. Peng, and X. Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2012.
doi:10.1109/TAP.2012.2189746

10. Schobert, D. T. and T. F. Eibert, "Fast integral equation solution by multilevel Green's function interpolation combined with multilevel fast multipole method," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4458-4463, 2012.
doi:10.1109/TAP.2012.2210291

11. Wulf, D. and R. Bunger, "An efficient implementation of the combined wideband MLFMA/LF-FIPWA," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 467-474, 2009.
doi:10.1109/TAP.2008.2011176

12. Bogaert, I., J. Peeters, and F. Olyslager, "A nondirective plane wave MLFMA stable at low frequencies," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3752-3767, 2008.
doi:10.1109/TAP.2008.2007356

13. Pan, X. M., J. G.Wei, Z. Peng, and X. Q. Sheng, "A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm," Radio Sci., Vol. 47, 2012.

14. Greengard, L., D. Guey±er, P. G. Martinsson, and V. Rokhlin, "Fast direct solvers for integral equations in complex three-dimensional domains," Acta Numerica, Vol. 18, 243-275, 2009.
doi:10.1017/S0962492906410011

15. Ho, K. L. and L. Greengard, "A fast direct solver for structured linear systems by recursive skeletonization," SIAM J. Sci. Comput., Vol. 34, No. 5, A2507-A2532, 2012.
doi:10.1137/120866683

16. Rodriguez, J. L., J. M. Taboada, M. G. Araujo, F. O. Basteiro, L. Landesa, and I. Garcia-Tunon, "On the use of the singular value decomposition in the fast multipole method," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2325-2334, 2008.
doi:10.1109/TAP.2008.926761

17. Liberty, E., F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert, "Randomized algorithms for the low-rank approximation of matrices," Proc. Natl. Acad. Sci., Vol. 104, 20167-20172, US, 2007.
doi:10.1073/pnas.0709640104