Vol. 133

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Theoretical Analysis of Sub-Wavelength Light Propagation through the Double-Chain Silver Nanorings

By Yuan-Fong Chau and Wayne Yang
Progress In Electromagnetics Research, Vol. 133, 331-346, 2013


Surface plasmon resonance effects on a system consisting of the double-chain silver nanorings are numerically investigated by means of the finite element method with three-dimensional calculations. The numerical results for resonant wavelengths corresponding to different light polarizations, pair numbers, illumination wavelengths, charge distribution and the permittivities filled inside the dielectric holes are reported as well. Results show that the double-chain silver nanorings exhibit tunable plasmon resonances in the near field zone that are not observed for the silver nanodisks of the same volume. The resonance wavelength is redshifted as the filling medium in dielectric holes increases, which is attributed to a longer effective optical path. It can be verified that the proposed structure (e.g., twelve pairs or more pairs) is pertinent to the functionality of long range of wave guiding and also show promise for applications in nanooptical devices, sensing, and surface-enhanced spectroscopy, due to their strong and tunable plasmon resonance.


Yuan-Fong Chau and Wayne Yang, "Theoretical Analysis of Sub-Wavelength Light Propagation through the Double-Chain Silver Nanorings," Progress In Electromagnetics Research, Vol. 133, 331-346, 2013.


    1. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

    2. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery," Progress In Electromagnetic Research, Vol. 128, 35-53, 2012.

    3. Mortazavi, D., A. Z. Kouzani, and K. C. Vernon, "A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks," Progress In Electromagnetic Research, Vol. 130, 429-446, 2012.

    4. Koerkamp, K. J. K., S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes ," Phys. Rev. Lett., Vol. 92, 183901, 2004.

    5. Raether, H., Surface Plasmonson Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, 1988.

    6. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.

    7. Mayergoyz, I. D., "Numerical analysis of nanoparticle-structured plasmon waveguides of light," IEEE Transactions on Magnetics, Vol. 43, 1685-1688, 2007.

    8. Bozhevolnyi, S. I., J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett., Vol. 86, 3008-3011, 2001.

    9. Saj, W. M., "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express, Vol. 13, 4818-4827, 2005.

    10. Chu, H.-S., W.-B. Ewe, E.-P. Li, and R. Vahldieck, "Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding," Opt. Express, Vol. 15, 4216-4223, 2007.

    11. Sweatlock, L. A., S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B, Vol. 71, 235408, 2005.

    12. Zhia, R., J. A. Schuller, A. Chandran, and M. Brongersma, "Plasmonics: The next chip-scale technology," Materials Today, Vol. 9, 20-27, 2006.

    13. Maier, S., P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Loel, and A. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater., Vol. 2, 229-232, 2003.

    14. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit ," Phys. Rev. B, Vol. 62, R16356-R16359, 2000.

    15. Maier, S. A., P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B, Vol. 67, 205402, 2003.

    16. Chau, Y.-F., H.-H. Yeh, and D. P. Tsai, "Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders," Phys. of Plasmas, Vol. 16, 022303, 2009.

    17. Baer, R., D. Neuhauser, and S. Weiss, "Enhanced absorption induced by a metallic nanoshell," Nano Lett., Vol. 4, 85-88, 2004.

    18. Chau, Y.-F., H.-H. Yeh, and D. P. Tsai, "Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair," Appl. Optics, Vol. 47, 5557-5561, 2008.

    19. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.

    20. Okamoto, T., Near-field Optics and Surface Plasmon Polaritons, 99, S. Kawata, Ed., Springer, 2001.

    21. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared," Appl. Optics, Vol. 22, 4493-4499, 1983.

    22. Ordal, M. A., R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Optics, Vol. 24, 1099-1120, 1985.

    23. Kalele, S., S. W. Gosavi, J. Urban, and S. K. Kulkarni, "Nanoshell particles: Synthesis, properties and applications," Current Science, Vol. 91, 1038, 2006.

    24. Baida, H., P. Billaud, S. Marhaba, and D. Christofilos, "Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO2 nanoparticles," Nano Lett., Vol. 9, 3463, 2009.

    25. Maceira, V., F. Caruso, and M. Luis, "Coated colloids with tailored optical properties," J. Phys. Chem. B, Vol. 107, 10990, 2003.

    26. Chen, M. W., Y.-F. Chau, and D. P. Tsai, "Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres," Plasmonics, Vol. 3, 157-164, 2008.

    27. Ma, Y.-W., J. Zhang, L.-H. Zhang, G.-A. Jian, and S.-F. Wu, "Theoretical analysis the optical properties of multi-coupled silver nanoshell particles," Plasmonics, Vol. 6, 705-713, 2011.

    28. Chau, Y.-F., H. H. Yeh, and D. P. Tsai, "Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1005-1014, 2010.

    29. Duan, J.-M., X.-F. Lia, L. Yao, S. Pan, and M.-D. Chen, "Local field enhancement of pair arrays of silver nanospheres," Opt. Commun., Vol. 282, 4005-4008, 2009.

    30. Chau, Y.-F., H.-Y. Li, Z.-H. Jiang, Y.-F. Chen, C.-S. Lin, M.-S. Liu, F.-L. Wu, and D. P. Tsai, "Manipulation of subwavelength optical fields and resonant field enhancements of a silver-shell nanocylinder pair and chain waveguides with different core-shell patterns," Journal of Nanoparticle Research, Vol. 13, 3939-3949, 2011.

    31. Prodan, E., C. Radloff, and N. J. Halas, P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419, 2003.