Vol. 135

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-12-26

An Improved Nonlinear Chirp Scaling Algorithm Based on Curved Trajectory in Geosynchronous SAR

By Cheng Hu, Teng Long, and Ye Tian
Progress In Electromagnetics Research, Vol. 135, 481-513, 2013
doi:10.2528/PIER12092603

Abstract

Geosynchronous synthetic aperture radar (GEO SAR) has the characteristics of long aperture time and large imaging area. Therefore, the conventional imaging algorithm in Low Earth Orbit (LEO) SAR loses effect. In this paper, based on curved trajectory model under an ideal acquisition and not considering some acquisition perturbations (atmosphere, orbital deviations), an accurate two-dimensional frequency spectrum is analytically obtained via series reversion principle and high order Taylor expansion. Then, an improved Nonlinear Chirp Scaling (NCS) algorithm is proposed in GEO SAR, which includes novel range migration correction factor, coupling phase compensation factor, NCS factor and azimuth compression function. Finally, the correctness of the proposed NCS algorithm is verified via imaging results of point array targets and area targets.

Citation


Cheng Hu, Teng Long, and Ye Tian, "An Improved Nonlinear Chirp Scaling Algorithm Based on Curved Trajectory in Geosynchronous SAR," Progress In Electromagnetics Research, Vol. 135, 481-513, 2013.
doi:10.2528/PIER12092603
http://jpier.org/PIER/pier.php?paper=12092603

References


    1. Tomiyasu, , K., "Synthetic aperture radar in geosynchronous orbit ," IEEE Antennas and Propagation Symp., 42-45, 1978.

    2. Tomiyasu, , K. and J. L. Pacelli, "Synthetic aperture radar imaging from an inclined geosynchronous orbit," IEEE Trans. Geosci. Remote Sens., Vol. 21, 324-329, 1983.
    doi:10.1109/TGRS.1983.350561

    3. Madsen, , S. N., , W. Edelstein, L. D. DiDomenico, and J. LabBrecque, "A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture," Proc. IEEE IGARSS,, Vol. 1, 447-449, 2001.

    4. Osipov, I. G., , et al., "Calculated performance of sar for high orbit spacecraft using nuclear power supply, ," Proc. EUSAR,, Vol. 1, No. 4, 2006.

    5. Moussessian, , A., et al., "System concepts and technologies for high orbit SAR," IEEE MTT-S International Microwave Symposium Digest,, 1623-1626, 2005.

    6. Madsen, , S. N., , C. Chen, and W. Edelstein, "Radar options for global earthquake monitoring," Proc. IEEE IGARSS,, Vol. 3, 1483-1485, 2002.

    7. NASA and JPL, "Global earthquake satellite system: A 20-year plan to enable earthquake prediction," JPL Document,, 2003.
    doi:http://solidearth.jpl.nasa.gov/GESS/3123 GESS Rep 2003.pdf.

    8. Prati, C., et al., "Passive geosynchronous SAR system reusing backscattered digital audio broadcasting signals ," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 6, 1973-1976, 1998.
    doi:10.1109/36.729370

    9. Cazzani, L., , et al., "A ground-based parasitic SAR experiment," IEEE Trans. Geosci. Remote Sens., , Vol. 38, No. 5, 1973-1976, 2000.
    doi:10.1109/36.868872

    10. Edelstein, W., , S. Madsen, A. Mooussessian, and C. Chen, "Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits," Proc. SPIE,, Vol. 5659, 195-203, 2005.
    doi:10.1117/12.578989

    11. Moussessian, , A., , C. Chen, W. Edelstein, S. Madsen, and P. Rosen, "\System concepts and technologies for high orbit SAR," IEEE MTI-S International Microwave Symplosium, 1623-1626, 2005.

    13. Bruno, , D., S. E. Hobbs, and , "Radar imaging from geosynchronous orbit: Temporal decorrelation aspects," IEEE Trans. Geosci. Remote Sens.,, Vol. 48, No. 7, 2924-2929, 2010.
    doi:10.1109/TGRS.2010.2042062

    14. Sheng, , W., S. E. Hobbs, and , "Research on compensation of motion, Earth curvature and tropospheric delay in GEO SAR," Acta Astronautica, Vol. 68, 2005-2011, 2011.
    doi:10.1016/j.actaastro.2010.11.010

    15. Hobbs, , S. E., GeoSAR Summary of the Group Design Project, MSc in Astronautics and Space Engineering 2005/06, Cranfield University, 2006.

    16. Kou, , L. L., , X. Q. Wang, J. S. Chong, and M. S. Xiang, "Research on interferometric deformation detection for geosynchronous SAR," Proc. IGARSS, 3502-3505, 2010.

    17. Hu, C., , F. F. Liu, W. F. Yang, T. Zeng, and T. Long, "Modification of slant range model and imaging processing in GEO SAR," Proc. IGARSS, 4679-4682, 2010.

    18. Yang, , W. F., , Y. Zhu, F. F. Liu, C. Hu, and Z. G. Ding, "Modified range migration algorithm in GEO SAR system ," Proc. EUSAR , 708-711, 2010.

    19. Liu, , Q., , W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging ," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
    doi:10.2528/PIER11060503

    20. Liu, , Q., W. Hong, W. X. Tan, and Y. Wu, "E±cient geosynchronous circular SAR raw data simulation of extended 3-D scenes ," Progress In Electromagnetics Research, Vol. 127, 335-350, 2012.
    doi:10.2528/PIER12030306

    21. Yu, , Z., et al., "Concepts, properties and imaging technologies for GEO SAR," Proc. SPIE,, Vol. 7494, 749407-1, 2008.

    22. Long, , T., X. C. Dong, C. Hu, and T. Zeng, "A new method of zero-doppler centroid control in GEO SAR," IEEE Geosci. Romote Sens. Lett., Vol. 8, No. 3, 513-516, 2011.

    23. Knaell, , K. K., "Three-dimensional SAR from curvilinear aperture," Proc. SPIE, Vol. 2230, 120-134, 1994.
    doi:10.1117/12.177199

    24. Ishimaru, , A., T. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1524-1530, 1998.
    doi:10.1109/36.718856

    25. Cantalloube, , H. , E. C. Koeniquer, and , "High resolution SAR imaging along circular trajectories," Proc. IGARSS,, 2259-2262, 2007.

    26. Soumekh, , M., "Reconnaissance with slant plane circular SAR imaging," IEEE Trans. Image Process., Vol. 5, No. 8, 1252-1265, 1996.
    doi:10.1109/83.506760

    27. Burki, , J. and C. F. Barnes, "Slant plane CSAR processing using householder transform," IEEE Trans. Geosci. Remote Sens., Vol. 17, No. 10, 1900-1907, 2008.

    28. Tian, , W. M., , C. Hu, and T. Zeng, "Several special issues in GEO SAR system," 8th European Conference on Synthetic Aperture Radar (EuSAR), , 1-4, 2010.

    29. Hu, , C., , T. Long, , T. Zeng, F. F. Liu, and Z. P. Liu, "The accurate focusing and resolution analysis method in geosynchronous SAR," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 10, 1-16, 2011.
    doi:10.1109/TGRS.2011.2160402

    30. Liu, , Z. P., , C. Hu, and T. Zeng, "Improved secondary range compression focusing method in GEO SAR," ICASSP,, 1373-1376, 2011.

    31. Hu, , C., et al., "An accurate imaging focusing method in GEO SAR," ACTA Armamentarii,, Vol. 31, No. Suppl. 2, 28-32, 2010.

    32. Davidson, , G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Transaction on Aerospace and Electronic Systems, Vol. 32, No. 1, 121-133, 1996.
    doi:10.1109/7.481254

    33. Raney, R. K., et al., "Precision SAR processing using chirp scaling," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 4, 786-799, 1994.
    doi:10.1109/36.298008

    34. Moreira, , A., , J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scan SAR imaging modes ," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 5, 1123-1136, 1996.
    doi:10.1109/36.536528

    35. Carrara, , W. G., , R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, , Norwood, MA, , 1995.

    36. Bamler, R., "A comparison of range-doppler and wavenumber domain SAR focusing algoithms ," IEEE Trans. Geosci. Romote Sens., Vol. 30, No. 4, 706-713, 1992.
    doi:10.1109/36.158864

    37. Cumming, I. G. , F. H. Wong, and , "Digital Processing of Synthetic Aperture Radar Data," Artech House, 2005.

    38. Carrara, , W. G., , R. S. Goodman, and R. M. Maiewski, "Spotlight Synthetic Aperture Radar: Signal Processing Algorithms," Artech House, , 1995..

    39. Wong, , F. H. , T. S. Yeo, and , "New applications of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
    doi:10.1109/36.921412

    40. Jin, , M. J. and C. Wu, "A SAR correlation algorithm which accommodates large-range migration," IEEE Trans. Geosci. Remote Sens.,, Vol. 22, No. 6, 592-597, 1984.

    41. Neo, Y. L., , F. Wong, and I. G. Cumming, "A two-dimensional spectrum for bistatic SAR processing using series reversion," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 2007.
    doi:10.1109/LGRS.2006.885862

    42. Wong, , F. H., , I. G. Cumming, and Y. L. Neo, "Focusing bistatic SAR data using the nonlinear chirp scaling algorithm," IEEE Trans. Geosci. Romote Sens., Vol. 46, No. 9, 2493-2505, 2008.
    doi:10.1109/TGRS.2008.917599