Vol. 132

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Detached Zero Index Metamaterial Lens for Antenna Gain Enhancement

By Fan-Yi Meng, Yue-Long Lyu, Kuang Zhang, Qun Wu, and Joshua Le-Wei Li
Progress In Electromagnetics Research, Vol. 132, 463-478, 2012


In this paper, a detached zero index metamaterial lens (ZIML) consisting of metal strips and modified split ring resonators (MSRRs) is proposed for antenna gain enhancement. The effective permittivity and permeability of the detached ZIML are designed to synchronously approach zero, which leads the ZIML to having an effective wave impedance matching with air and near-zero index simultaneously. As a result, neither does the detached ZIML need to be embedded in horns aperture nor depends on auxiliary reflectors in enhancing antenna gain, which is quite different from conventional ZIMLs. Moreover, the distance between antenna and the detached ZIML slightly affect the gain enhancement, which further confirms that the ZIML can be detached from antennas. Simulated results show that the effective refractive index of the detached ZIML is near zero in a broad frequency range where the effective relative wave impedance is close to 1. The detached ZIML is fabricated and tested by placing it in front of an H-plane horn antenna. One finds that evident gain enhancement is obtained from 8.9 GHz to 10.8 GHz and the greatest gain enhancement reaches up to 4.02 dB. In addition, the detached ZIML can also work well at other frequencies by adjusting its geometric parameters to scale, which is demonstrated by designing and simulating two detached ZIMLs with center frequencies of 2.4 GHz and 5.8 GHz, respectively.


Fan-Yi Meng, Yue-Long Lyu, Kuang Zhang, Qun Wu, and Joshua Le-Wei Li, "A Detached Zero Index Metamaterial Lens for Antenna Gain Enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.


    1. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.

    2. Andres-Garcia, B., L. E. Garcia-Munoz, V. Gonzalez-Posadas, F. J. Herraiz-Martinez, and D. Segovia-Vargas, "Filtering lens structure based on SRRs in the low THz band," Progress In Electromagnetics Research, Vol. 93, 71-90, 2009.

    3. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.

    5. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Physical Review Letters, Vol. 102, No. 18, 183903(3), 2009.

    6. Lim, C. C. S. and T. Itoh, "A reflecto-directive system using a composite right/left-handed (CRLH) leaky-wave antenna and hetero-dyne mixing," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 183-185, 2004.

    7. Attia, H., M. M. Bait-Suwailam, O. M. Ramahi, and A. Electromagnet, "Enhanced gain planar inverted-F antenna with metamaterial superstrate for UMTS applications," PIERS Online, Vol. 6, No. 6, 585-588, 2010.

    8. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

    9. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902:1-4, 2002.

    10. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E --- Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 42, 046608-1, 2004.

    11. Wu, Q., P. Pan, F.-Y. Meng, L.-W. Li, and J. Wu, "A novel °at lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A --- Materials Science and Processing, Vol. 87, No. 2, 151-156, 2007.

    12. Xiao, Z. and H. Xu, "Low refractive metamaterials for gain enhancement of horn antenna," Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, 225-232, 2009.

    13. Kim, D. and J. Choi, "Analysis of antenna gain enhancement with a new planar metamaterial superstrate: An effective medium and a Fabry-Pérot resonance approach ," Journal of Infrared Millimeter and Terahertz Waves, Vol. 31, No. 11, 1289-1303, 2010.

    14. Hrabar, S., D. Bonefacic, and D. Muha, "ENZ-based shortened horn antenna --- An experimental study," Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, United States, 2008.

    15. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Technology Letters, Vol. 51, No. 8, 1973-1976, 2009.

    16. Cheng, Q. A., W. X. Jiang, and T. J. Cui, "Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials," Journal of Physics D-Applied Physics, Vol. 43, No. 33, 335446(6), 2010.

    17. Ma, Y. G., P. Wang, X. Chen, and C. K. Ong, "Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial," Applied Physics Letters, Vol. 94, No. 4, 044107(3), 2009.

    18. Jiang, Z. H. and D. H. Werner, "Anisotropic metamaterial lens with a monopole feed for high-gain multi-beam radiation," 2011 IEEE International Symposium on Antennas and Propagation, 1346-1349, 2011.

    19. Weng, Z. B., Y. C. Jiao, G. Zhao, and F. S. Zhang, "Design and experiment of one dimension and two dimension metamaterial structures for directive emission," Progress In Electromagnetics Research, Vol. 70, 199-209, 2007.

    20. Weng, Z. B., X. M. Wang, Y. Song, Y. C. Jiao, and F. S. Zhang, "A directive patch antenna with arbitrary ring aperture lattice metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1283-1291, 2008.

    21. Sauleau, R., P. Coquet, T. Matsui, and J. P. Daniel, "A new concept of focusing antennas using plane-parallel Fabry-Pérot cavities with nonuniform mirrors, ," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 11, 3171-3175, 2003.

    22. Smith, D. R., S. Schultz, S. L. McCall, and P. M. Platzmann, "Defect studies in a 2-dimensional periodic photonic lattice," Journal of Modern Optics, Vol. 41, No. 2, 395-404, 1994.

    23. Kaklamani, D. I., "Full-wave analysis of a Fabry-Pérot type resonator," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1627-1634, 1999.

    24. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

    25. Wu, Q., J. P. Turpin, D. H. Werner, and E. Lier, "Thin metamaterial lens for directive radiation," 2011 IEEE International Symposium on Antennas and Propagation, 2886-2889, Spokane, WA, 2011.

    26. Turpin, J. P., Q. Wu, D. H. Werner, E. Lier, B. Martin, and M. Bray, "Anisotropic metamaterial realization of a flat gain-enhancing lens for antenna applications," 2011 IEEE International Symposium on Antennas and Propagation, 2882-2885, 2011.

    27. Mei, Z. L., J. Bai, T. M. Niu, and T. J. Cui, "A half Maxwell fish-eye lens antenna based on gradient-index metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 398-401, 2012.

    28. Zhang, Y., R. Mittra, and W. Hong, "On the synthesis of a °at lens using a wideband low-refraction gradient-index metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2178-2187, 2011.

    29. Neu, J., B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, "Metamaterial-based gradient index lens with strong focusing in the THz frequency range," Optics Express, Vol. 18, No. 26, 27748-27757, 2010.

    30. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, 1996.

    31. Tang, Q., F.-Y. Meng, Q. Wu, and J.-C. Lee, "A balanced composite backward and forward compact waveguide based on resonant metamaterials," Journal of Applied Physics, Vol. 109, No. 7, 07A319(3), 2011.

    32. Meng, F.-Y., Q. Wu, D. Erni, and L.-W. Li, "Controllable metamaterial-loaded waveguides supporting backward and forward waves," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3400-3411, 2011.

    33. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.

    34. Goncharenko, A. V. and K. R. Chen, "Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range," Journal of Nanophotonics, Vol. 4, No. 1, 041530, 2010.

    35. Hrabar, S., I. Krois, I. Bonic, and A. Kiricenko, "Negative capacitor paves the way to ultra-broadband metamaterials," Applied Physics Letters, Vol. 99, No. 25, 254103(3), 2011.

    36. Sun, L. and K. W. Yu, "Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media," Applied Physics Letters, Vol. 100, No. 26, 261903(3), 2012.