Vol. 133

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-10-19

The Sparsity-Promoted Solution to the Undersampling Tof-PET Imaging: Numerical Simulations

By Dapeng Lao, Mark W. Lenox, and Gamal Akabani
Progress In Electromagnetics Research, Vol. 133, 235-258, 2013
doi:10.2528/PIER12080711

Abstract

Recently, the limited-angle TOF-PET system has become an active research topic due to the considerable reduction of hardware cost and potential applicability for performing needle biopsy on patients while in the scanner. This undersampling measurement configuration oftentimes suffers from the deteriorated reconstructed images. However, the established theory of Compressed Sampling (CS) provides a potential framework for undertaking this problem, given that the imaged object can be sparse in some transformed domain. In here, we studied using numerical simulations the application of sparsity-promoted framework to TOF-PET imaging for two undersampling configurations. From these simulations, a relationship was obtained between the number of detectors (or the range of angle) and TOF time resolution, which provided an empirical guide of designing a low-cost TOF-PET systems while ensuring good reconstruction quality. Another contribution is the exploration of p-TV regularization, which showed that RMSE (Root of Mean Square Error) and SSIM (Structural Similarity) were optimized when p = 0.5. Several sets of representative numerical experiments were executed to validate the proposed methodology, which demonstrates the promising applicability of undersampling TOF-PET imaging.

Citation


Dapeng Lao, Mark W. Lenox, and Gamal Akabani, "The Sparsity-Promoted Solution to the Undersampling Tof-PET Imaging: Numerical Simulations," Progress In Electromagnetics Research, Vol. 133, 235-258, 2013.
doi:10.2528/PIER12080711
http://jpier.org/PIER/pier.php?paper=12080711

References


    1. Jamieson, D. G. and J. H. Greenberg, "Positron emission tomography of the brain," Computerized Medical Imaging and Graphics, Vol. 13, No. 1, 61-79, 1989.
    doi:10.1016/0895-6111(89)90079-7

    2. Ollinger, J. M. and J. A. Fessler, "Positron-emission tomography," IEEE Signal Processing Magazine, Vol. 14, No. 1, 43-55, 1997.
    doi:10.1109/79.560323

    3. Conti, M., et al., "First experimental results of time-of-flight reconstruction on an LSO PET scanner," Physics in Medicine and Biology, Vol. 50, 4507-4526, 2005.
    doi:10.1088/0031-9155/50/19/006

    4. Muehllehner, G. and J. S. Karp, "Positron emission tomography," Physics in Medicine and Biology, Vol. 51, R117-R137, 2006.
    doi:10.1088/0031-9155/51/13/R08

    5. Surti, S. and J. S. Karp, "Design considerations for a limited angle, dedicated breast, TOF PET scanner," Physics in Medicine and Biology, Vol. 53, 2911-2921, 2008.
    doi:10.1088/0031-9155/53/11/010

    6. Mallat, S., A Wavelet Tour of Signal Processing, Academic-Press, 1998.

    7. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Prcoessing, Vol. 54, 4311, Nov. 2006.
    doi:10.1109/TSP.2006.881199

    8. Lee, K., S. Tak, and J. Ye, "A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion," IEEE Trans. Medical Imaging, Vol. 30, 1076-1089, May 2011.

    9. Ravishankar, S. and Y. Bresler, "MR image reconsruction from highly undersampled K-space data by dictionary learning," IEEE Trans. Medical Imaging, Vol. 30, 1028-1041, 2011.
    doi:10.1109/TMI.2010.2090538

    10. Bouman, C. and K. Sauer, "A generalized Gaussian image model for edge-perserving map estimation," IEEE Trans. Signal Processing, Vol. 2, 296-310, Jul. 1993.

    11. Rudin, L., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physics D, Vol. 60, 259-268, Jul. 1992.
    doi:10.1016/0167-2789(92)90242-F

    12. Unser, M. and P. Tafti, "Stochastic models for sparse and piecewise-smooth processing," IEEE Trans. Signal Processing, Vol. 59, 989-1006, Mar. 2011.
    doi:10.1109/TSP.2010.2091638

    13. Karahanoglu, F., I. Bayram, and D. van de Ville, "A signal processing approach to generalized 1-D total variation," IEEE Trans. Signal Processing, Vol. 59, 5265-5274, Nov. 2011.
    doi:10.1109/TSP.2011.2164399

    14. Rodriguez, P. and B. Wohlberg, "Efficient minimization method for a generalized total variation functional," IEEE Trans. Image Processing, Vol. 18, 322-332, Feb. 2009.
    doi:10.1109/TIP.2008.2008420

    15. Candes, E., J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., Vol. 59, 1027-1223, 2006.

    16. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, 489-509, Feb. 2006.
    doi:10.1109/TIT.2005.862083

    17. Lustig, M., D. Donoho, and J. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Reson. Med., Vol. 58, 1182-1195, Apr. 2007.
    doi:10.1002/mrm.21391

    18. Bian, J., et al., "Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT," Phys. Med. Biol., Vol. 55, 6575, 2010.
    doi:10.1088/0031-9155/55/22/001

    19. Han, X., et al., "Algorithm-enabled low-dose micro-CT imaging," IEEE Trans. Medical Imaging, Vol. 30, 606-620, Mar. 2011.

    20. Harmany, Z. T., R. F. Marcia, and R. M. Willett, "Sparsity-regularized photon-limited imaging," IEEE International Symposium on Biomedical Imaging from Nano to Macro, 772-775, 2010.
    doi:10.1109/ISBI.2010.5490062

    21. Wang, G. and J. Qi, "Direct reconstruction of dynamic PET parameteric images using sparse spectral representation," IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 867-870, 2009.
    doi:10.1109/ISBI.2009.5193190

    22. Ahthoine, S., J. F. Aujol, Y. Broursier, and C. Melot, "On the efficiency of proximal methods for CBCT and PET reconstruction with sparsity constraint," 4th Workshop on Signal Processing with Adaptive Sparse Structured Representations, 25, 2011.

    23. Meinshausen, N. and B. Yu, "LASSO-type recovery of sparse representations for high-dimensional data," Annals of Statistics, Vol. 37, 246-270, 2009.
    doi:10.1214/07-AOS582

    24. Zhu, C., "Stable recovery of sparse signals via regularized minimization," IEEE Trans. Information Theory, Vol. 54, 3364-3367, Jul. 2008.

    25. Mallon, A. and P. Grangeat, "Three-dimensional PET reconstruction with time-of-flight measurement," Phys. Med. Biol., Vol. 37, 717-729, 1992.
    doi:10.1088/0031-9155/37/3/016

    26. Cho, S., S. Ahn, Q. Li, and R. Leahy, "Analytical properties of time-of-flight PET data," Phys. Medi. Biol., Vol. 53, 2809-2821, 2008.
    doi:10.1088/0031-9155/53/11/004

    27. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
    doi:10.1137/080716542

    28. Richter, S. and R. De Carlo, "Continuation methods: Theory and applications," IEEE Transactions on Automatic Control, Vol. 28, No. 6, 660-665, 1983.
    doi:10.1109/TAC.1983.1103294

    29. Wang, Z. and A. C. Bovik, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Processing, Vol. 13, No. 4, 1-14, 2004.
    doi:10.1109/TIP.2003.819861

    30. Zhdanov, M. and E. Tolstaya, "Minimum support nonlinear parameterization in the solution of a 3D magnetotelluric inverse problem," Inverse Problems, Vol. 20, 937-952, 2004.
    doi:10.1088/0266-5611/20/3/017

    31. Lois, C., et al., "An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging," The Journal of Nuclear Medicine, Vol. 51, No. 2, 237-245, 2010.
    doi:10.2967/jnumed.109.068098

    32. Daubechies, I., et al., "Iteratively re-weighted least squares minimization for sparse reconvery," Communications of Pure and Applied Mathematics, Vol. 63, No. 1, 1-38, 2010.
    doi:10.1002/cpa.20303

    33. Vogel, C. R., "Non-convergence of the L-curve regularization parameter selection method," Inverse Problems, Vol. 12, 535-547, 1996.
    doi:10.1088/0266-5611/12/4/013

    34. Golub, G. H., M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, Vol. 21, No. 2, 215-223, 1979.
    doi:10.1080/00401706.1979.10489751

    35. Li, K.-C., "From STEIN's unbiased risk estimates to the method of generalized cross validation," The Annals of Statistics, Vol. 13, No. 4, 1362-1377, 1985.
    doi:10.1214/aos/1176349742