Vol. 133

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-10-18

Unidirectional Antenna Using Two-Probe Excited Circular Ring Above Square Reflector for Polarization Diversity with High Isolation

By Souphanna Vongsack, Chuwong Phongcharoenpanich, Sompol Kosulvit, Kazuhiko Hamamoto, and Toshio Wakabayashi
Progress In Electromagnetics Research, Vol. 133, 159-176, 2013
doi:10.2528/PIER12080110

Abstract

This paper presents a circular ring antenna fed by two perpendicular probes, both of which are placed above the square reflector. The antenna is employed to radiate unidirectional beam for polarization diversity reception. A linear isolator is added to improve the isolation between the two probes. The antenna is proposed for the point-to-point communication of Wireless Local Area Network (WLAN) system according to the IEEE 802.11a standard in which the allocated frequency band ranges from 5.150 GHz to 5.825 GHz. The proposed antenna is compact and suitable for mass production. Without the dielectric material, the antenna is free of dielectric loss and capable of high power handling. The prototype antenna was fabricated and measured to verify the theoretical predictions. At the center frequency, the unidirectional pattern with the measured half-power beamwidths in two principal planes of 65 and 75 degrees is achieved. The front-to-back ratio is 31 dB, and the antenna gain is 7.42 dBi. The |S11| and |S21| are respectively -23.09 dB and -33.99 dB; the obtained bandwidth is 23.64%. Based on the aforementioned characteristics, the antenna is a potential candidate for polarization diversity of WLAN applications.

Citation


Souphanna Vongsack, Chuwong Phongcharoenpanich, Sompol Kosulvit, Kazuhiko Hamamoto, and Toshio Wakabayashi, "Unidirectional Antenna Using Two-Probe Excited Circular Ring Above Square Reflector for Polarization Diversity with High Isolation," Progress In Electromagnetics Research, Vol. 133, 159-176, 2013.
doi:10.2528/PIER12080110
http://jpier.org/PIER/pier.php?paper=12080110

References


    1. IEEE Std. 802.11, Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1997.

    2. IEEE Std. 802.11a, Supplement to Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 5 GHz Band , 1999.

    3. Chreim, H., E. Pointereau, B. Jecko, and P. Dufrane, "Omnidirectional electromagnetic band gap antenna for base station applications," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 499-502, 2007.
    doi:10.1109/LAWP.2007.904716

    4. Freytag, L., E. Pointereau, and B. Jecko, "Omnidirectional dielectric electromagnetic band gap antenna for base station of wireless network," Proceedings of IEEE Antennas and Propagation Society International Symposium, Vol. 1, 815-818, 2004.

    5. Tsai, C.-L., "A coplanar-strip dipole antenna for broadband circular polarization operation," Progress In Electromagnetics Research, Vol. 121, 141-157, 2011.
    doi:10.2528/PIER11082407

    6. Wounchoum, P., D. Worasawate, C. Phongcharoenpanich, and M. Krairiksh, "A switched-beam antenna using circumferential-slots on a concentric sectoral cylindrical cavity excited by coupling slots," Progress In Electromagnetics Research, Vol. 120, 127-141, 2011.

    7. Eom, S.-Y., Y.-B. Jung, S. A. Ganin, and A. V. Shishlov, "A cylindrical shaped-reflector antenna with a linear feed array for shaping complex beam patterns," Progress In Electromagnetics Research, Vol. 119, 477-495, 2011.
    doi:10.2528/PIER11062912

    8. Quan, X. L., R. L. Li, J. Y. Wang, and Y. H. Cui, "Development of a broadband horizontally polarized omnidirectional planar antenna and its array for base stations," Progress In Electromagnetics Research, Vol. 128, 441-456, 2012.

    9. Wei, K. P., Z. J. Zhang, and Z. H. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.
    doi:10.2528/PIER11112101

    10. Li, R. L., T. Wu, and M. M. Tentzeris, "A triple-band unidirectional coplanar antenna for 2.4/3.5/5-GHz WLAN/WiMax applications," Proceedings of IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.
    doi:10.1109/APS.2009.5171962

    11. Sze, J.-Y. and S.-P. Pan, "Design of broadband circularly polarized square slot antenna with a compact size," Progress In Electromagnetics Research, Vol. 120, 513-533, 2011.

    12. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

    13. Fuschini, F., H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci, and P. Vainikainen, "Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 848-857, 2008.
    doi:10.1109/TAP.2008.916893

    14. Wang, X., Z. Du, and K. Gong, "A compact wideband planar diversity antenna covering UMTS and 2.4 GHz WLAN bands," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 588-591, 2008.
    doi:10.1109/LAWP.2008.2000664

    15. Peng, H.-L., W.-Y. Yin, J.-F. Mao, D. Huo, X. Hang, and L. Zhou, "A compact dual-polarized broadband antenna with hybrid beam-forming capabilities," Progress In Electromagnetics Research, Vol. 118, 253-271, 2011.
    doi:10.2528/PIER11042905

    16. Ding, Y., Z. Du, K. Gong, and Z. Feng, "A novel dual-band printed diversity antenna for mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2088-2096, 2007.
    doi:10.1109/TAP.2007.900249

    17. Toh, W., Z. Chen, X. Qing, and T. See, "A planar UWB diversity antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3467-3473, 2009.
    doi:10.1109/TAP.2009.2024131

    18. Perini, P. L. and C. L. Holloway, "Angle and space diversity comparisons in different mobile radio environments," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 6, 764-775, 1998.
    doi:10.1109/8.686760

    19. Laneman, J. N., G. W. Wornell, and D. N. C. Tse, "An efficient protocol for realizing cooperative diversity in wireless networks," Proceedings of IEEE Information Symposium on Information Theory, 294, 2001.

    20. Brown, T. W. C., R. Saunders, S. Stavrou, and M. Fiacco, "Characterization of polarization diversity at the mobile," IEEE Transactions on Vehicular Technology, Vol. 56, No. 5, 2440-2447, 2007.
    doi:10.1109/TVT.2007.898371

    21. Li, X., X. Huang, Z. Nie, and Y. Zhang, "Equivalent relations between interchannel coupling and antenna polarization coupling in polarization diversity systems," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1709-1715, 2007.
    doi:10.1109/TAP.2007.898508

    22. Krairiksh, M., P. Keowsawat, C. Phongcharoenpanich, and S. Kosulvit, "Two-probe excited circular ring antenna for MIMO application," Progress In Electromagnetics Research, Vol. 97, 417-431, 2009.
    doi:10.2528/PIER09091607

    23. Xie, J.-J., Y.-Z. Yin, J. Ren, and T. Wang, "A wideband dual-polarized patch antenna with electric probe and magnetic loop feeds," Progress In Electromagnetics Research, Vol. 132, 499-515, 2012.

    24. Su, D., J. J. Qian, H. Yang, and D. Fu, "A novel broadband polarization diversity antenna using a cross-pair of folded dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 433-435, 2005.
    doi:10.1109/LAWP.2005.860191

    25. Eggers, P. C. F., J. Toftgard, and A. M. Oprea, "Antenna systems for base station diversity in urban small and micro cells," IEEE Journal on Selected Areas in Communications, Vol. 11, No. 7, 1046-1057, 1993.
    doi:10.1109/49.233217

    26. Lee, B., S. Kwon, and J. Choi, "Polarization diversity microstrip base station antenna at 2 GHz using T-shaped aperture-coupled feeds," Proceedings of IEE Microwave, Antennas and Propagation, Vol. 148, No. 5, 334-338, 2001.
    doi:10.1049/ip-map:20010730

    27. Dietrich, C. B., W. L. Stutzman, Jr., B. Kim, and K. Dietze, "Smart antennas in wireless communications: Base-station diversity and handset beamforming," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 142-151, 2000.
    doi:10.1109/74.883513

    28. Ou Yang, J., S. Bo, J. Zhang, and Y. Feng, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
    doi:10.2528/PIER11070503

    29. Xie, J.-J., Y.-Z. Yin, C. W. Zhang, and B. Li, "A novel trapezoidal slot patch antenna with a beveled ground plane for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 27, 53-62, 2011.
    doi:10.2528/PIERL11091907

    30. Cai, D. S., Z.-Y. Lei, H. Chen, G.-L. Ning, and R. B. Wang, "Crossed oval-ring slot antenna with triple-band operation for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 27, 141-150, 2011.
    doi:10.2528/PIERL11092810

    31. Liu, W.-C. and Y. Dai, "Dual-broadband twin-pair inverted-L shaped strip antenna for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 27, 63-73, 2011.
    doi:10.2528/PIERL11091309

    32. Wang, X.-M., Z.-B. Weng, Y.-C. Jiao, Z. Zhang, and F.-S. Zhang, "Dual-polarized dielectric resonator antenna with high isolation using hybrid feeding mechanism for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 18, 195-203, 2010.
    doi:10.2528/PIERL10101005

    33. Rezaeieh, S. A. and M. Kartal, "A new triple band circularly polarized square slot antenna design with crooked T and F-shape strips for wireless applications," Progress In Electromagnetics Research, Vol. 121, 1-18, 2011.
    doi:10.2528/PIER11081506

    34. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.

    35. Weng, W.-C. and C.-L. Hung, "Design and optimization of a logo-type antenna for multiband applications," Progress In Electromagnetics Research, Vol. 123, 159-174, 2012.
    doi:10.2528/PIER11102705

    36. CST-Microwave Studio, User's Manual, 2006.

    37. Kosulvit, S., M. Krairiksh, C. Phongcharoenpanich, and T. Wakabayashi, "A simple and cost-effective bidirectional antenna using a probe excited circular ring," IEICE Trans. Electronics, Vol. E84-C, No. 4, 443-450, 2001.