Vol. 133
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-16
Gain-Assisted Negative Refractive Index in a Quantum Coherent Medium
By
Progress In Electromagnetics Research, Vol. 133, 37-51, 2013
Abstract
A new scheme for overcoming losses with incoherent optical gain in a quantum-coherent left-handed atomic vapor is suggested. In order to obtain low-loss, lossless or active left-handed media (LHM), a pump field, which aims at realizing population inversion of atomic levels, is introduced into a four-level atomic system. Both analytical and numerical results are given to illustrate that such an atomic vapor can exhibit intriguing electric and magnetic responses required for achieving simultaneously negative permittivity and permeability (and hence a gain-assisted quantum-coherent negative refractive index would emerge). The quantum-coherent left-handed atomic vapor presented here could have four fascinating characteristics: i) three-dimensionally isotropic negative refractive index, ii) doublenegative atomic medium at visible and infrared wavelengths, iii) high-gain optical amplification, and iv) tunable negative refractive index based on quantum coherent control. Such a three-dimensionally isotropic gain medium with negative refractive index at visible and infrared frequencies would have a potential application in design of new quantum optical and photonic devices, including superlenses for perfect imaging and subwavelength focusing.
Citation
Katus Maski, "Gain-Assisted Negative Refractive Index in a Quantum Coherent Medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.
doi:10.2528/PIER12072203
References

1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B., A. J. Holden, D. J. Robbins, W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Zhang, Z. M. and C. J. Fu, "Unusual photo tunneling in the presence of a layer with a negative index," Appl. Phys. Lett., Vol. 80, 1097-1099, 2002.
doi:10.1063/1.1448172

6. Dong, W., L. Gao, and C.-W. Qiu, "Goos-Hänchen shift at the surface of chiral negative refractive media," Progress in Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002

7. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2001.
doi:10.1103/PhysRevLett.85.3966

8. Chen, L., S. He, and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett., Vol. 92, 107404, 2004.
doi:10.1103/PhysRevLett.92.107404

9. Engheta, N., "Idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless. Propag. Lett., Vol. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576

10. Shen, L., S. He, and S. Xiao, "Stability and quality factor of a one-dimensional subwavelength cavity resonator containing a left-handed material," Phys. Rev. B, Vol. 69, 115111, 2004.
doi:10.1103/PhysRevB.69.115111

11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

12. Choi, J. and C. Seo, "High-e±ciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress in Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

13. Shelby, R. A., D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 209, 77-79, 2001.
doi:10.1126/science.1058847

14. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489

15. Hu, L. B. and S. T. Chui, "Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials," Phys. Rev. B, Vol. 66, 085108, 2002.
doi:10.1103/PhysRevB.66.085108

16. Koschny, T., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, 121103(R, 2005.

17. Vendik, I., O. Vendik, and M. Odit, "Isotropic artificial media with simultaneously negative permittivity and permeability," Microwave Opt. Tech. Lett., Vol. 18, 2553-2556, 2006.
doi:10.1002/mop.22002

18. Guney, D. O., T. Koschny, and C. M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial ," Opt. Express, Vol. 18, 12348-12353, 2010.
doi:10.1364/OE.18.012348

19. Logeeswaran, V. J., M. S. Islam, M. L. Chan, D. A Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, "Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology," Mater. Res. Soc. Symp. Proc., Vol. 919, 0919-J02, 2006.

20. Oktel, M. Ö. and Ö E. Müstecapho·glu, "Electromagnetically induced left-handedness in a dense gas of three-level atoms," Phys. Rev. A, Vol. 70, 053806, 2004.
doi:10.1103/PhysRevA.70.053806

21. Shen, J. Q., Z. C. Ruan, and S. He, "How to realize a negative refractive index material at the atomic level in an optical frequency range?," J. Zhejiang Univ. Science (China), Vol. 5, 1322-1326, 2004.
doi:10.1631/jzus.2004.1322

22. Shen, J. Q., "Negatively refracting atomic vapor," J. Mod. Opt., Vol. 53, 2195-2205, 2006.
doi:10.1080/09500340600812966

23. Thommen, Q. and P. Mandel, "Electromagnetically induced left handedness in optically excited four-level atomic media," Phys. Rev. Lett., Vol. 96, 053601, 2006.
doi:10.1103/PhysRevLett.96.053601

24. Thommen, Q. and P. Mandel, "Left-handed properties of erbium-doped crystals," Opt. Lett., Vol. 31, 1803-1805, 2006.
doi:10.1364/OL.31.001803

25. Krowne, C. M. and J. Q. Shen, "Dressed-state mixed-parity transitions for realizing negative refractive index," Phys. Rev. A, Vol. 79, 023818, 2009.
doi:10.1103/PhysRevA.79.023818

26. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in 3D photonic metamaterials," Nature Photon., Vol. 5, 523-530, 2011.

27. Huang, Z., T. Koschny, and C. M. Soukoulis, "Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium," Phys. Rev. Lett., Vol. 108, 187402, 2012.
doi:10.1103/PhysRevLett.108.187402

28. Fang, A., Z. Huang, T. Koschny, and C. M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Opt. Express, Vol. 19, 12688-12699, 2011.
doi:10.1364/OE.19.012688

29. Fang, A., T. Koschny, M. Wegener, and C. M. Soukoulis, "Self-consistent calculation of metamaterials with gain," Phys. Rev. B, Vol. 79, 241104(R), 2009.

30. Meinzer, N., M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, "Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain," Opt. Express, Vol. 18, 24140-24151, 2010.
doi:10.1364/OE.18.024140

31. Tassin, P., L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett., Vol. 102, 053901, 2009.
doi:10.1103/PhysRevLett.102.053901

32. Zhao, S. C., Z. D. Liu, and Q. X. Wu, "Negative refraction without absorption via both coherent and incoherent FIelds in a four-level left-handed atomic system ," Opt. Commun., Vol. 283, 3301-3304, 2010.
doi:10.1016/j.optcom.2010.04.054

33. Scully, M. O. and M. S. Zubairy, Quantum Optics, Chap. 5, Cambridge University Press, Cambridge, England, 1997.

34. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Chap. 4, 159-162, John Wiley & Sons, New York, 2001.

35. Cook, D. M., The Theory of the Electromagnetic Field, Chap. 11, Prentice-Hall, Inc., New Jersey, 1975.

36. Moseley, R. R., S. Shepherd, D.J. Fulton, B. D. Sinclair, and M. H. Dunn, "Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing ," Phys. Rev. Lett., Vol. 74, 670-673, 1995.
doi:10.1103/PhysRevLett.74.670

37. Wang, H., D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett., Vol. 87, 073601, 2001.
doi:10.1103/PhysRevLett.87.073601

38. Imamoglu, A., H. Schmidt, G. Woods, and . Deutsch, "Strongly interacting photons in a nonlinear cavity," Phys. Rev. Lett., Vol. 79, 1467-1470, 1997.
doi:10.1103/PhysRevLett.79.1467

39. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904

40. Jelinek, L., R. Marqués, F. Mesa, and J. D. Baena, "Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media," Phys. Review B, Vol. 77, 205110, 2008.
doi:10.1103/PhysRevB.77.205110

41. Silveirinha, M. G., P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett., Vol. 33, 1726-1728, 2008.
doi:10.1364/OL.33.001726

42. Wu, J.-H., X.-G. Wei, D.-F. Wang, Y. Chen, and J.-Y. Gao, "Coherent hole-burning phenomenon in a Doppler broadened three-level ¤-type atomic system," J. Opt. B: Quantum Semiclass. Opt., Vol. 6, 54-58, 2004.
doi:10.1088/1464-4266/6/1/009