Vol. 133

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Gain-Assisted Negative Refractive Index in a Quantum Coherent Medium

By Katus Maski
Progress In Electromagnetics Research, Vol. 133, 37-51, 2013


A new scheme for overcoming losses with incoherent optical gain in a quantum-coherent left-handed atomic vapor is suggested. In order to obtain low-loss, lossless or active left-handed media (LHM), a pump field, which aims at realizing population inversion of atomic levels, is introduced into a four-level atomic system. Both analytical and numerical results are given to illustrate that such an atomic vapor can exhibit intriguing electric and magnetic responses required for achieving simultaneously negative permittivity and permeability (and hence a gain-assisted quantum-coherent negative refractive index would emerge). The quantum-coherent left-handed atomic vapor presented here could have four fascinating characteristics: i) three-dimensionally isotropic negative refractive index, ii) doublenegative atomic medium at visible and infrared wavelengths, iii) high-gain optical amplification, and iv) tunable negative refractive index based on quantum coherent control. Such a three-dimensionally isotropic gain medium with negative refractive index at visible and infrared frequencies would have a potential application in design of new quantum optical and photonic devices, including superlenses for perfect imaging and subwavelength focusing.


Katus Maski, "Gain-Assisted Negative Refractive Index in a Quantum Coherent Medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.


    1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.

    3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.

    4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.

    5. Zhang, Z. M. and C. J. Fu, "Unusual photo tunneling in the presence of a layer with a negative index," Appl. Phys. Lett., Vol. 80, 1097-1099, 2002.

    6. Dong, W., L. Gao, and C.-W. Qiu, "Goos-Hänchen shift at the surface of chiral negative refractive media," Progress in Electromagnetics Research, Vol. 90, 255-268, 2009.

    7. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2001.

    8. Chen, L., S. He, and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett., Vol. 92, 107404, 2004.

    9. Engheta, N., "Idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless. Propag. Lett., Vol. 1, 10-13, 2002.

    10. Shen, L., S. He, and S. Xiao, "Stability and quality factor of a one-dimensional subwavelength cavity resonator containing a left-handed material," Phys. Rev. B, Vol. 69, 115111, 2004.

    11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

    12. Choi, J. and C. Seo, "High-e±ciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress in Electromagnetics Research, Vol. 106, 33-47, 2010.

    13. Shelby, R. A., D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 209, 77-79, 2001.

    14. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.

    15. Hu, L. B. and S. T. Chui, "Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials," Phys. Rev. B, Vol. 66, 085108, 2002.

    16. Koschny, T., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, 121103(R, 2005.

    17. Vendik, I., O. Vendik, and M. Odit, "Isotropic artificial media with simultaneously negative permittivity and permeability," Microwave Opt. Tech. Lett., Vol. 18, 2553-2556, 2006.

    18. Guney, D. O., T. Koschny, and C. M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial ," Opt. Express, Vol. 18, 12348-12353, 2010.

    19. Logeeswaran, V. J., M. S. Islam, M. L. Chan, D. A Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, "Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology," Mater. Res. Soc. Symp. Proc., Vol. 919, 0919-J02, 2006.

    20. Oktel, M. Ö. and Ö E. Müstecapho·glu, "Electromagnetically induced left-handedness in a dense gas of three-level atoms," Phys. Rev. A, Vol. 70, 053806, 2004.

    21. Shen, J. Q., Z. C. Ruan, and S. He, "How to realize a negative refractive index material at the atomic level in an optical frequency range?," J. Zhejiang Univ. Science (China), Vol. 5, 1322-1326, 2004.

    22. Shen, J. Q., "Negatively refracting atomic vapor," J. Mod. Opt., Vol. 53, 2195-2205, 2006.

    23. Thommen, Q. and P. Mandel, "Electromagnetically induced left handedness in optically excited four-level atomic media," Phys. Rev. Lett., Vol. 96, 053601, 2006.

    24. Thommen, Q. and P. Mandel, "Left-handed properties of erbium-doped crystals," Opt. Lett., Vol. 31, 1803-1805, 2006.

    25. Krowne, C. M. and J. Q. Shen, "Dressed-state mixed-parity transitions for realizing negative refractive index," Phys. Rev. A, Vol. 79, 023818, 2009.

    26. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in 3D photonic metamaterials," Nature Photon., Vol. 5, 523-530, 2011.

    27. Huang, Z., T. Koschny, and C. M. Soukoulis, "Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium," Phys. Rev. Lett., Vol. 108, 187402, 2012.

    28. Fang, A., Z. Huang, T. Koschny, and C. M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Opt. Express, Vol. 19, 12688-12699, 2011.

    29. Fang, A., T. Koschny, M. Wegener, and C. M. Soukoulis, "Self-consistent calculation of metamaterials with gain," Phys. Rev. B, Vol. 79, 241104(R), 2009.

    30. Meinzer, N., M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, "Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain," Opt. Express, Vol. 18, 24140-24151, 2010.

    31. Tassin, P., L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett., Vol. 102, 053901, 2009.

    32. Zhao, S. C., Z. D. Liu, and Q. X. Wu, "Negative refraction without absorption via both coherent and incoherent FIelds in a four-level left-handed atomic system ," Opt. Commun., Vol. 283, 3301-3304, 2010.

    33. Scully, M. O. and M. S. Zubairy, Quantum Optics, Chap. 5, Cambridge University Press, Cambridge, England, 1997.

    34. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Chap. 4, 159-162, John Wiley & Sons, New York, 2001.

    35. Cook, D. M., The Theory of the Electromagnetic Field, Chap. 11, Prentice-Hall, Inc., New Jersey, 1975.

    36. Moseley, R. R., S. Shepherd, D.J. Fulton, B. D. Sinclair, and M. H. Dunn, "Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing ," Phys. Rev. Lett., Vol. 74, 670-673, 1995.

    37. Wang, H., D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett., Vol. 87, 073601, 2001.

    38. Imamoglu, A., H. Schmidt, G. Woods, and . Deutsch, "Strongly interacting photons in a nonlinear cavity," Phys. Rev. Lett., Vol. 79, 1467-1470, 1997.

    39. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.

    40. Jelinek, L., R. Marqués, F. Mesa, and J. D. Baena, "Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media," Phys. Review B, Vol. 77, 205110, 2008.

    41. Silveirinha, M. G., P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett., Vol. 33, 1726-1728, 2008.

    42. Wu, J.-H., X.-G. Wei, D.-F. Wang, Y. Chen, and J.-Y. Gao, "Coherent hole-burning phenomenon in a Doppler broadened three-level ¤-type atomic system," J. Opt. B: Quantum Semiclass. Opt., Vol. 6, 54-58, 2004.