Vol. 132

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

First-Principle Analysis for Electromagnetic Eigen Modes in an Optical Metamaterial Slab

By Masanobu Iwanaga
Progress In Electromagnetics Research, Vol. 132, 129-148, 2012


Electromagnetic (EM) eigen modes in a fishnet metamaterial (MM) slab have been comprehensively analyzed in an experimental configuration, based only on precise solutions of Maxwell equations. The EM eigen modes were directly detected from light-absorption peaks. Each mode was explicitly characterized by the dispersion diagram and EM field distributions. It was consequently found that the modes were classfied into either inner modes inside the slab or a mode at the interface with the surrounding media. The symmetric properties of the inner modes were clarified using group theory. The interface mode was found to come from surface plasmon polariton at flat metal/insulator interface. The present analysis procedure is generally applicable to MM slabs and enables to clarify the properties without models or assumptions, which have been usually used in MM studies.


Masanobu Iwanaga, "First-Principle Analysis for Electromagnetic Eigen Modes in an Optical Metamaterial Slab," Progress In Electromagnetics Research, Vol. 132, 129-148, 2012.


    1. Itoh, T. and C. Caloz, Electromagnetic Metamaterials, Wiley, New York, 2005.

    2. Pendry, J. B. and D. R. Smith, "Reversing light with negative refraction," Phys. Today, Vol. 57, No. 6, 37-41, 2004.

    3. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, Oxford, 2009.

    4. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nature Photon., Vol. 5, No. 9, 523-530, 2011.

    5. Fang, N., D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, "Ultrasonicmetamaterials with negative modulus," Nature Mater., Vol. 5, No. 6, 452-456, 2006.

    6. Zhang, S., L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett., Vol. 102, No. 19, 194301, 2009.

    7. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 102, No. 2, 024301, 2011.

    8. Smith, D. R., S. Schultz, P. Marko·s, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2002.

    9. Cho, K., Reconstruction of Macroscopic Maxwell Equations, Springer, Berlin, 2010.

    10. Iwanaga, M., "Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs," Opt. Express, Vol. 18, No. 15, 15389-15398, 2010.

    11. Iwanaga, M., "Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab," Phys. Rev. B, Vol. 82, No. 15, 155402, 2010.

    12. Iwanaga, M., N. Ikeda, and Y. Sugimoto, "Enhancement of local electromagnetic fields in plasmonic crystals of coaxial metallic nanostructures ," Phys. Rev. B, Vol. 85, No. 4, 045427, 2012.

    13. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, No. 13, 137404, 2005.

    14. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, No. 12, 1800-1802, 2006.

    15. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Opt. Lett., Vol. 32, No. 1, 53-55, 2007.

    16. Dolling, G., M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett., Vol. 32, No. 5, 551-553, 2007.

    17. Chettiar, U. K., A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: Double negative at 813nm and single negative at 772 nm ," Opt. Lett., Vol. 32, No. 12, 1671-1673, 2007.

    18. Liu, N., L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials," Adv. Mater., Vol. 20, No. 20, 3859-3865, 2008.

    19. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376-379, 2008.

    20. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, No. 22, 3478-3450, 2009.

    21. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, 2010.

    22. Mary, A., S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett., Vol. 101, No. 10, 103902, 2008.

    23. Parsons, J., E. Hendry, J. R. Sambles, and W. L. Barnes, "Localized surface-plasmon resonances and negative refractive index in nanostructured electromagnetic metamaterials," Phys. Rev. B, Vol. 80, No. 24, 245117, 2009.

    24. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, No. 6, 067402, 2011.

    25. Yang, J., C. Sauvan, H. T. Liu, and P. Lalanne, "Theory of fishnet negative-index optical metamaterials," Phys. Rev. Lett., Vol. 107, No. 4, 043903, 2011.

    26. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.

    27. Iwanaga, M., "In-plane plasmonic modes of negative group velocity in perforated waveguides," Opt. Lett., Vol. 36, No. 13, 2504-2506, 2011.

    28. Li, L., "New formulation of the fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A, Vol. 14, No. 10, 2758-2767, 1997.

    29. Li, L., "Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.

    30. Rakic, A. D., A. B. Djuru·sic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., Vol. 37, No. 22, 5271-5283, 1998.

    31. Fan, S. and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B, Vol. 65, No. 23, 235112, 2002.

    32. Swihart, J. C., "Field solution for a thin-film superconducting strip transmission line," J. Appl. Phys., Vol. 32, No. 3, 461-469, 1961.

    33. Economou, E. N., "Surface plasmons in thin films," Phys. Rev., Vol. 182, No. 2, 539-554, 1969.

    34. Sakoda, K., Optical Properties of Photonic Crystals, 2nd Ed., Springer, Berlin, 2005.

    35. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Sauders College, Fort Worth, 1976.