Vol. 132

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Surface Waves Radiation by Finite Arrays of Magnetoelectric Resonators

By Camille Jouvaud, Abdelwaheb Ourir, and Julien de Rosny
Progress In Electromagnetics Research, Vol. 132, 177-198, 2012


We study the propagation of waves on infinite and finite size arrays made of subwavelength magnetoelectric resonators. We propose an analytical study where each magnetoelectric resonator is modelled simultaneously by an electric and a magnetic dipole. We show how near field coupling and wavenumber quantification due to the finite size of the structure induce a frequency splitting of the resonator fundamental mode. We theoretically demonstrate that despite a spatial period of the waves smaller than half wavelength (in vacuum), the structure can efficiently emits radiations. An analytic expression of the Q factor associated to the radiation losses is proposed. To correctly estimate this factor, we show that not only near but also far field interaction terms between the dipoles must to be considered.


Camille Jouvaud, Abdelwaheb Ourir, and Julien de Rosny, "Surface Waves Radiation by Finite Arrays of Magnetoelectric Resonators," Progress In Electromagnetics Research, Vol. 132, 177-198, 2012.


    1. Montgomery, J., "Scattering by an infinite periodic array of thin conductors on a dielectric sheet," IEEE Transactions on Antennas and Propagation, Vol. 23, 70-75, Jan. 1975.

    2. Tsao, C.-H. and R. Mittra, "Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses," IEEE Transactions on Antennas and Propagation, Vol. 32, 478-486, May 1984.

    3. Zarrillo, G. and K. Aguiar, "Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 35, 1406-1417, Dec. 1987.

    4. Smith, D. R., S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, "Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity," Applied Physics Letters, Vol. 65, No. 5, 645-647, 1994.

    5. Sigalas, M. M., C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, 11744-11751, Oct. 1995.

    6. Suzuki, T. and P. K. L. Yu, "Dispersion relation at point l in the photonic band structure of the face-centered-cubic lattice with active or conductive dielectric media," J. Opt. Soc. Am. B, Vol. 12, 583-591, Apr. 1995.

    7. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3d wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, 2480-2483, Apr. 1996.

    8. Maier, S. A., P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater., Vol. 2, 229-232, Apr. 2003.

    9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.

    10. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Applied Physics Letters, Vol. 75, No. 10, 1425-1427, 1999.

    11. Maier, S. A., M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Applied Physics Letters, Vol. 78, No. 1, 16-18, 2001.

    12. Maier, S. A., P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in au nanoparticle chain waveguides of di®erent lengths: Estimation of waveguide loss," Applied Physics Letters, Vol. 81, No. 9, 1714-1716, 2002.

    13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.

    14. Guida, G., D. Maystre, G. Tayeb, and P. Vincent, "Mean-field theory of two-dimensional metallic photonic crystals," J. Opt. Soc. Am. B, Vol. 15, 2308-2315, Aug. 1998.

    15. Abdeddaim, R., A. Ourir, and J. de Rosny, "Realizing a negative index metamaterial by controlling hybridization of trapped modes," Phys. Rev. B, Vol. 83, 033101, Jan. 2011.

    16. Ourir, A., R. Abdeddaim, and J. de Rosny, "Double-t metamaterial for parallel and normal transverse electric incident waves ," Optics Letters, Vol. 36, 1527-1529, May 2011.

    17. Podolskiy, V. A., A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," Journal of Nonlinear Optical Physics & Materials, Vol. 11, No. 1, 65-74, 2002.

    18. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of nearinfrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, Sep. 2005.

    19. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Optics Letters, Vol. 30, 3198-3200, Dec. 2005.

    20. Linden, S., M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett., Vol. 97, 083902, Aug. 2006.

    21. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, Oct. 2000.

    22. Alù, A. and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines," Phys. Rev. B, Vol. 74, 205436, Nov. 2006.

    22. Shvets, G., S. Trenda¯lov, J. B. Pendry, and A. Sarychev, "Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett., Vol. 99, 053903, Aug. 2007.

    24. Lemoult, F., G. Lerosey, J. de Rosny, and M. Fink, "Resonant metalenses for breaking the diffraction barrier," Phys. Rev. Lett., Vol. 104, 203901, May 2010.

    25. Li, X. and M. I. Stockman, "Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal," Phys. Rev. B, Vol. 77, 195109, May 2008.

    26. Harrington, R., "Matrix methods for field problems," Proceedings of the IEEE, Vol. 55, 136-149, Feb. 1967.

    27. Chen, C.-C., "Scattering by a two-dimensional periodic array of conducting plates," IEEE Transactions on Antennas and Propagation, Vol. 18, 660-665, Sep. 1970.

    28. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," Journal of Applied Physics, Vol. 92, 6252-6261, Nov. 2002.

    29. Shamonina, E. and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: Components for a onedimensional waveguide," Journal of Physics D-applied Physics, Vol. 37, Int. Phys. Dielectr. Grp., Feb. 2004.

    30. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nature Photonics, Vol. 3, 157-162, Mar. 2009.

    31. Zhou, J., T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett., Vol. 95, 223902, Nov. 2005.

    32. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, No. 1, 168, 2005.

    33. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Optics Express, Vol. 16, 18131-18144, Oct. 2008.

    34. Orfanidis, S. J., Electromagnetic Waves and Antennas, Electronic book, Chap. 16, 655, Aug. 2010, http://www.ece.rutgers.edu/ orfanidi/ewa/.

    35. Sydoruk, O., O. Zhuromskyy, A. Radkovskaya, E. Shamonina, and L. Solymar, Theory and Phenomena of Metamaterials, Meta-materials Handbook, Chap. 7, 36-1{36-13, CRC Press/Taylor & Francis, 2009.

    36. Liu, H., D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B, Vol. 76, 073101, Aug. 2007.

    37. Balanis, C., Antenna Theory: Analysis and Design/Constantine A. Balanis, J. Wiley, New York, 1982.

    38. Purcell, E. M., Spontaneous emission probabilities at radio frequencies, Proceedings of the American Physical Society, Vol. 69, 674, American Physical Society, Apr. 1946.

    39. Lemoult, F., M. Fink, and G. Lerosey, "Revisiting the wire medium: An ideal resonant metalens," Waves in Random and Complex Media, Vol. 21, No. 4, 591-613, 2011.