Vol. 132
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-27
Surface Waves Radiation by Finite Arrays of Magnetoelectric Resonators
By
Progress In Electromagnetics Research, Vol. 132, 177-198, 2012
Abstract
We study the propagation of waves on infinite and finite size arrays made of subwavelength magnetoelectric resonators. We propose an analytical study where each magnetoelectric resonator is modelled simultaneously by an electric and a magnetic dipole. We show how near field coupling and wavenumber quantification due to the finite size of the structure induce a frequency splitting of the resonator fundamental mode. We theoretically demonstrate that despite a spatial period of the waves smaller than half wavelength (in vacuum), the structure can efficiently emits radiations. An analytic expression of the Q factor associated to the radiation losses is proposed. To correctly estimate this factor, we show that not only near but also far field interaction terms between the dipoles must to be considered.
Citation
Camille Jouvaud, Abdelwaheb Ourir, and Julien de Rosny, "Surface Waves Radiation by Finite Arrays of Magnetoelectric Resonators," Progress In Electromagnetics Research, Vol. 132, 177-198, 2012.
doi:10.2528/PIER12071009
References

1. Montgomery, J., "Scattering by an infinite periodic array of thin conductors on a dielectric sheet," IEEE Transactions on Antennas and Propagation, Vol. 23, 70-75, Jan. 1975.
doi:10.1109/TAP.1975.1141006

2. Tsao, C.-H. and R. Mittra, "Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses," IEEE Transactions on Antennas and Propagation, Vol. 32, 478-486, May 1984.
doi:10.1109/TAP.1984.1143348

3. Zarrillo, G. and K. Aguiar, "Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 35, 1406-1417, Dec. 1987.
doi:10.1109/TAP.1987.1144035

4. Smith, D. R., S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, "Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity," Applied Physics Letters, Vol. 65, No. 5, 645-647, 1994.
doi:10.1063/1.112258

5. Sigalas, M. M., C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, 11744-11751, Oct. 1995.

6. Suzuki, T. and P. K. L. Yu, "Dispersion relation at point l in the photonic band structure of the face-centered-cubic lattice with active or conductive dielectric media," J. Opt. Soc. Am. B, Vol. 12, 583-591, Apr. 1995.
doi:10.1364/JOSAB.12.000583

7. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3d wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, 2480-2483, Apr. 1996.
doi:10.1103/PhysRevLett.76.2480

8. Maier, S. A., P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater., Vol. 2, 229-232, Apr. 2003.
doi:10.1038/nmat852

9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773

10. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Applied Physics Letters, Vol. 75, No. 10, 1425-1427, 1999.
doi:10.1063/1.124714

11. Maier, S. A., M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Applied Physics Letters, Vol. 78, No. 1, 16-18, 2001.
doi:10.1063/1.1337637

12. Maier, S. A., P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in au nanoparticle chain waveguides of di®erent lengths: Estimation of waveguide loss," Applied Physics Letters, Vol. 81, No. 9, 1714-1716, 2002.
doi:10.1063/1.1503870

13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

14. Guida, G., D. Maystre, G. Tayeb, and P. Vincent, "Mean-field theory of two-dimensional metallic photonic crystals," J. Opt. Soc. Am. B, Vol. 15, 2308-2315, Aug. 1998.
doi:10.1364/JOSAB.15.002308

15. Abdeddaim, R., A. Ourir, and J. de Rosny, "Realizing a negative index metamaterial by controlling hybridization of trapped modes," Phys. Rev. B, Vol. 83, 033101, Jan. 2011.
doi:10.1103/PhysRevB.83.033101

16. Ourir, A., R. Abdeddaim, and J. de Rosny, "Double-t metamaterial for parallel and normal transverse electric incident waves ," Optics Letters, Vol. 36, 1527-1529, May 2011.
doi:10.1364/OL.36.001527

17. Podolskiy, V. A., A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," Journal of Nonlinear Optical Physics & Materials, Vol. 11, No. 1, 65-74, 2002.
doi:10.1142/S0218863502000833

18. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of nearinfrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, Sep. 2005.
doi:10.1103/PhysRevLett.95.137404

19. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Optics Letters, Vol. 30, 3198-3200, Dec. 2005.
doi:10.1364/OL.30.003198

20. Linden, S., M. Decker, and M. Wegener, "Model system for a one-dimensional magnetic photonic crystal," Phys. Rev. Lett., Vol. 97, 083902, Aug. 2006.
doi:10.1103/PhysRevLett.97.083902

21. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

22. Alù, A. and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines," Phys. Rev. B, Vol. 74, 205436, Nov. 2006.

22. Shvets, G., S. Trenda¯lov, J. B. Pendry, and A. Sarychev, "Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett., Vol. 99, 053903, Aug. 2007.
doi:10.1103/PhysRevLett.99.053903

24. Lemoult, F., G. Lerosey, J. de Rosny, and M. Fink, "Resonant metalenses for breaking the diffraction barrier," Phys. Rev. Lett., Vol. 104, 203901, May 2010.
doi:10.1103/PhysRevLett.104.203901

25. Li, X. and M. I. Stockman, "Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal," Phys. Rev. B, Vol. 77, 195109, May 2008.
doi:10.1103/PhysRevB.77.195109

26. Harrington, R., "Matrix methods for field problems," Proceedings of the IEEE, Vol. 55, 136-149, Feb. 1967.
doi:10.1109/PROC.1967.5433

27. Chen, C.-C., "Scattering by a two-dimensional periodic array of conducting plates," IEEE Transactions on Antennas and Propagation, Vol. 18, 660-665, Sep. 1970.
doi:10.1109/TAP.1970.1139760

28. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," Journal of Applied Physics, Vol. 92, 6252-6261, Nov. 2002.
doi:10.1063/1.1510945

29. Shamonina, E. and L. Solymar, "Magneto-inductive waves supported by metamaterial elements: Components for a onedimensional waveguide," Journal of Physics D-applied Physics, Vol. 37, Int. Phys. Dielectr. Grp., Feb. 2004.

30. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nature Photonics, Vol. 3, 157-162, Mar. 2009.
doi:10.1038/nphoton.2009.4

31. Zhou, J., T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett., Vol. 95, 223902, Nov. 2005.

32. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, No. 1, 168, 2005.
doi:10.1088/1367-2630/7/1/168

33. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Optics Express, Vol. 16, 18131-18144, Oct. 2008.

34. Orfanidis, S. J., Electromagnetic Waves and Antennas, Electronic book, Chap. 16, 655, Aug. 2010, http://www.ece.rutgers.edu/ orfanidi/ewa/.

35. Sydoruk, O., O. Zhuromskyy, A. Radkovskaya, E. Shamonina, and L. Solymar, Theory and Phenomena of Metamaterials, Meta-materials Handbook, Chap. 7, 36-1{36-13, CRC Press/Taylor & Francis, 2009.

36. Liu, H., D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B, Vol. 76, 073101, Aug. 2007.
doi:10.1103/PhysRevB.76.073101

37. Balanis, C., Antenna Theory: Analysis and Design/Constantine A. Balanis, J. Wiley, New York, 1982.

38. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Proceedings of the American Physical Society, Vol. 69, 674 American Physical Society, Apr. 1946.

39. Lemoult, F., M. Fink, and G. Lerosey, "Revisiting the wire medium: An ideal resonant metalens," Waves in Random and Complex Media, Vol. 21, No. 4, 591-613, 2011.
doi:10.1080/17455030.2011.611836