Vol. 131

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-09-04

Electromagnetic Design and Analysis of Double-Rotor Flux-Modulated Permanent-Magnet Machines

By Chunhua Liu and Kwok-Tong Chau
Progress In Electromagnetics Research, Vol. 131, 81-97, 2012
doi:10.2528/PIER12060605

Abstract

Two double-rotor flux-modulated permanent-magnet (DR-FMPM) machines are proposed for direct-drive applications, including the DR coaxial magnetic-geared (CMG) type and the DR PM vernier (PMV) type. The key of the DR-CMG type is to utilize two modulation rings for obtaining the desired magneticgearing effect, whereas the key of the DR-PMV type is to utilize the flux-modulation poles and fractional-slot concentrated-winding arrangement for achieving the magnetic-gearing effect. Thus, both proposed machines are able to directly connect their rotors with two different rotating loads. Their rotating speeds can also be independently controlled by two sets of armature windings. The proposed machines are designed and then analyzed by using the time-stepping finite element method. The corresponding results confirm the validity of the proposed machine design.

Citation


Chunhua Liu and Kwok-Tong Chau, "Electromagnetic Design and Analysis of Double-Rotor Flux-Modulated Permanent-Magnet Machines," Progress In Electromagnetics Research, Vol. 131, 81-97, 2012.
doi:10.2528/PIER12060605
http://jpier.org/PIER/pier.php?paper=12060605

References


    1. Chau, K. T., C. C. Chau, and C. Liu, "Overview of permanent magnet brushless drives for electric and hybrid electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, 2246-2257, Jun. 2008.
    doi:10.1109/TIE.2008.918403

    2. Zhu, Z. Q. and D. Howe, "Electrical machines and drives for electric, hybrid and fuel cell vehicles," Proceedings of IEEE, Vol. 95, No. 4, 746-765, Apr. 2007.
    doi:10.1109/JPROC.2006.892482

    3. Kawamura, A., N. Hoshi, T. W. Kim, T. Yokoyama, and T. Kume, "Analysis of anti-directional-twin-rotary motor drive characteristics for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 44, No. 1, 64-70, Feb. 1997.
    doi:10.1109/41.557500

    4. Chan, C. C. and K. T. Chau, Modern Electric Vehicle Technology, Oxford University Press, Nov. 2001.

    5. Hoeijmakers, M. J. and J. A. Ferreira, "The electric variable transmission," IEEE Transactions on Industry Applications, Vol. 42, No. 4, 1092-1100, Jul.--Aug. 2006.
    doi:10.1109/TIA.2006.877736

    6. Chau, K. T. and C. C. Chan, "Emerging energy-efficient technologies for hybrid electric vehicles," Proceedings of IEEE, Vol. 95, No. 4, 821-835, Apr. 2007.
    doi:10.1109/JPROC.2006.890114

    7. Sun, X., M. Cheng, W. Hua, and L. Xu, "Optimal design of double-layer permanent magnet dual mechanical port machine for wind power application," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4613-4616, Oct. 2009.

    8. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Transactions on Magnetics, Vol. 37, No. 4, 2844-2846, Jul. 2001.
    doi:10.1109/20.951324

    9. Jian, L. and K.-T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
    doi:10.2528/PIER09032301

    10. Chau, K. T., D. Zhang, J. Z. Zhang, C. Liu, and Y. J. Zhang, "Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles," IEEE Transactions on Magnetics, Vol. 43, No. 6, 2504-2506, Jun. 2007.
    doi:10.1109/TMAG.2007.893714

    11. Jian, L., K. T. Chau, and J. Z. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Transactions on Industry Applications, Vol. 45, No. 3, 954-962, May/Jun. 2009.
    doi:10.1109/TIA.2009.2018974

    12. Jian, L. and K.-T. Chau, "Design and analysis of a magnetic-geared electronic-continuously variable transmission system using finite element method," Progress In Electromagnetics Research, Vol. 107, 47-61, 2010.
    doi:10.2528/PIER10062806

    13. Toba, A. and T. A. Lipo, "Generic torque-maximizing design methodology of surface permanent-magnet vernier machine," IEEE Transactions on Industry Applications, Vol. 36, No. 6, 1539-1546, Nov./Dec. 2000.

    14. Li, J., K. T. Chau, J. Z. Jiang, C. Liu, and W. Li, "A new efficient permanent-magnet vernier machine for wind power generation," IEEE Transactions on Magnetics, Vol. 46, No. 6, 1475-1478, Jun. 2010.
    doi:10.1109/TMAG.2010.2044636

    15. Liu, C., J. Zhong, and K. T. Chau, "A novel flux-controllable vernier permanent-magnet machine," IEEE Transactions on Magnetics, Vol. 47, No. 10, 4238-4241, Oct. 2011.
    doi:10.1109/TMAG.2011.2152374

    16. El-Refaie, A. M., "Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 107-121, Jan. 2010.
    doi:10.1109/TIE.2009.2030211

    17. Li, W. and K.-T. Chau, "Analytical field calculation for linear tubular magnetic gears using equivalent anisotropic magnetic permeability," Progress In Electromagnetics Research, Vol. 127, 155-171, 2012.
    doi:10.2528/PIER12030301

    18. Wang, Y., K. T. Chau, C. C. Chan, and J. Z. Jiang, "Transient analysis of a new outer-rotor permanent-magnet brushless dc drive using circuit-field-torque time-stepping finite element method," IEEE Transactions on Magnetics, Vol. 38, No. 2, 1297-1300, Mar. 2002.
    doi:10.1109/20.996331