Vol. 129

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-06-21

Equivalent Circuit Analysis of Ridge-Loaded Folded-Waveguide Slow-Wave Structures for Millimeter-Wave Traveling-Wave Tubes

By Yan Hou, Jin Xu, Hai-Rong Yin, Yan-Yu Wei, Ling-Na Yue, Guoqing Zhao, and Yu-Bin Gong
Progress In Electromagnetics Research, Vol. 129, 215-229, 2012
doi:10.2528/PIER12042602

Abstract

In this paper, a new simple equivalent circuit model for analysis of dispersion and interaction impedance characteristics of ridge-loaded folded-waveguide slow-wave structure is presented. In order to make the computational results more accurately, the effects of the presence of the beam-hole and discontinuity due to the waveguide bend and the narrow side dimension change of this kind of structure were considered. The dispersion characteristics and the interaction impedance are numerical calculated and discussed. The analytical results agree very well with those obtained by the 3-D electromagnetic high-frequency simulation software. It is indicated that the equivalent circuit methods are reliable and high efficiency.

Citation


Yan Hou, Jin Xu, Hai-Rong Yin, Yan-Yu Wei, Ling-Na Yue, Guoqing Zhao, and Yu-Bin Gong, "Equivalent Circuit Analysis of Ridge-Loaded Folded-Waveguide Slow-Wave Structures for Millimeter-Wave Traveling-Wave Tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.
doi:10.2528/PIER12042602
http://jpier.org/PIER/pier.php?paper=12042602

References


    1. Döhler, G., D. Gagne, D. Gallagher, and R. Moats, "Serpentine wave-guide TWT," 1987 International Electron Devices Meeting Technical Digest, Vol. 33, 485-488, 1987.

    2. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
    doi:10.2528/PIER10071305

    3. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
    doi:10.2528/PIER10071505

    4. Kesari, V. and J. P. Keshari, "Analysis of a circular waveguide loaded with dielectric and metal discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
    doi:10.2528/PIER10110207

    5. Mustafa, F. and A. M. Hashim, "Properties of electromagnetic fields and effective permittivity excited by drifting plasma waves in semiconductor-insulator interface structure and equivalent transmission line technique for multi-layered structure," Progress In Electromagnetics Research, Vol. 104, 403-425, 2010.
    doi:10.2528/PIER10041504

    6. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
    doi:10.2528/PIER11090502

    7. Kuo, C.-W., S.-Y. Chen, Y.-D. Wu, and M.-H. Chen, "Analyzing the multilayer optical planar waveguides with double-negative metamaterial," Progress In Electromagnetics Research, Vol. 110, 163-178, 2010.
    doi:10.2528/PIER10101405

    8. Choi, J. J., C. M. Armstrong, F. Calise, A. K. Ganguly,R. H. Kyser, G. S. Park, R. K. Parker, and F. Wood, "Experimental observation of coherent millimeter wave radiation in a folded waveguide employed with a gyrating electron beam," Phys. Rev. Lett., Vol. 76, No. 22, 4273-4276, May 1996.
    doi:10.1103/PhysRevLett.76.4273

    9. Kory, C., J. David, H. T. Tran, L. Ives, and D. Chernin, "Folded waveguide circuit optimizations using Christine 1D," Proc. 32nd IEEE Int. Conf. Plasma Sci., 333, Jun. 2005.

    10. Booske, J. H., "New opportunities in vacuum electronics through the application of microfabrication technologies," Proc. Int. Vac. Electron. Conf., 11-12, Apr. 2002.

    11. Han, S. T., K. H. Jang, J. K. So, J. I. Kim, Y. M. Shin, N. M. Ryskin, S. S. Chang, and G. S. Park, "Low-voltage operation of Ka-band folded waveguide traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 32, No. 1, 60-66, Feb. 2004.
    doi:10.1109/TPS.2004.823978

    12. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier,D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes," IEEE Trans. Electron. Devices, Vol. 52, No. 5, 685-694, May 2005.
    doi:10.1109/TED.2005.845798

    13. Han, S. T., J. I. Kim, K. H. Jang, J. K. So, S. S. Chang,N. M. Ryskin, and G. S. Park, "Experimental investigation of millimeter wave folded-waveguide TWT," Proc. Int. Vac. Electron. Conf., 322-323, May 2003.

    14. He, J., et al., "Investigation of a ridge-loaded folded waveguide slow-wave system for the millimeter wave traveling wave tube," IEEE Trans. Plasma Sci., Vol. 38, No. 7, 1556-1562, 2010.
    doi:10.1109/TPS.2010.2049506

    15. Liu, S., "Folded waveguide circuit for broadband MM wave TWTs," Int. J. Infrared Millim Waves, Vol. 16, 809-815, 1995.
    doi:10.1007/BF02066640

    16. Na, Y. H., S. W. Chung, and J. J. Choi, "Analysis of a broadband Q-band folded-waveguide traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 30, 1017-1022, 2002.

    17. Han, S.-T., J.-I. Kim, and G. S. Park, "Design of a folded waveguide traveling-wave tube," Microw Opt. Technol. Lett., Vol. 38, 161-165, 2003.
    doi:10.1002/mop.11003

    18. Sumathy, M., K. J. Vinoy, and S. K. Datta, "Analysis of ridge-loaded folded-waveguide slow-wave structures for broadband traveling-wave tubes," IEEE Trans. Electron. Devices, Vol. 57, No. 6, 1440-1446, Jun. 2010.
    doi:10.1109/TED.2010.2045680

    19. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang,W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
    doi:10.2528/PIER11092906

    20. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing mems-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
    doi:10.2528/PIER09112506

    21. Klopf, E. M., S. B. Manic, M. M. Ilic, and B. M. Notaroš, "Effcient time-domain analysis of waveguide discontinuities using higher order FEM in frequency domain," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011.

    22., High Frequency Structure Simulator User's Reference, Ansoft Corp., Pittsburgh, PA, 2001.

    23. Collin, R. E., Foundations for Microwave Engineering, Wiley-IEEE Press, New York, 2000.

    24. Marcuvitz, N., "Waveguide Handbook," McGraw-Hill, New York, 1951.

    25. Hutter, R. G. E., "Beam and Wave Electronics in Microwave Tubes," Van Nostrand, New York, 1960.