Vol. 128

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-06-02

An Active Ring Slot with RF MEMS Switchable Radial Stubs for Reconfigurable Frequency Selective Surface Applications

By Rosalba Martinez-Lopez, Jorge Rodriguez-Cuevas, Alexander E. Martynyuk, and Jose I. Martinez-Lopez
Progress In Electromagnetics Research, Vol. 128, 419-440, 2012
doi:10.2528/PIER12041207

Abstract

An active ring slot resonator loaded by switchable radial stubs is investigated. It is shown that this element can be used as the unit cell of a switchable reconfigurable frequency selective surface (RFSS). Equivalent circuit and full-wave mathematical models are obtained to evaluate the reflection characteristics of the RFSS based on this element. The possibility to obtain different resonant transmission frequencies is discussed. The mathematical model developed is used to design an X band RFSS capable of obtaining resonant frequencies at 9.65, 10.28, 10.83 and 12.05 GHz. Commercially available RF MEMS switches are used to evaluate the effect of the off-state capacitances over the response of the periodic structure. To validate the numerical simulation results, different active and passive diaphragms were designed, fabricated, and tested using the waveguide simulator. A good agreement between numerical and measured results was found.

Citation


Rosalba Martinez-Lopez, Jorge Rodriguez-Cuevas, Alexander E. Martynyuk, and Jose I. Martinez-Lopez, "An Active Ring Slot with RF MEMS Switchable Radial Stubs for Reconfigurable Frequency Selective Surface Applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.
doi:10.2528/PIER12041207
http://jpier.org/PIER/pier.php?paper=12041207

References


    1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.
    doi:10.1002/0471723770

    2. Wu, T. K., Frequency Selective Surfaces and Grid Arrays, Wiley, New York, 1995.

    3. Monni, S., A. Neto, G. Gerini, F. Nennie, and A. Tijhuis, "Frequency-selective surface to prevent interference between radar and SATCOM antennas," IEEE Antennas Wireless Propag. Lett., Vol. 8, 220-223, 2009.
    doi:10.1109/LAWP.2009.2013166

    4. Erdemli, Y. E., K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, "Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays," IEEE Trans. on Antennas and Propag., Vol. 50, No. 12, 1716-1724, 2002.
    doi:10.1109/TAP.2002.807377

    5. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
    doi:10.2528/PIER04070701

    6., Chen Y., S. Yang, and Z.-P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.

    7. Sung G., H., K. W. Sowerby, and A. G. Williamson, "Modeling a low-cost frequency selective wall for wireless-friendly indoor environments," IEEE Antennas Wireless Propag. Lett., Vol. 5, 311, 2006.

    8. Barlevy, A. S. and Y. Rahmat-Samii, "On the electrical and numerical properties of high Q resonances in frequency selective surface," Progress In Electromagnetics Research, Vol. 22, 1-27, 1999.
    doi:10.2528/PIER98101301

    9. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, 209-215, 2005.
    doi:10.1109/TAP.2004.840528

    10. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
    doi:10.2528/PIER06011701

    11. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
    doi:10.2528/PIER07072302

    12. De Cos, M. E., Y. Alvarez Lopez, R. C. Hadarig, and F. Las-Heras, "Flexible uniplanar artificial magnetic conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
    doi:10.2528/PIER10061505

    13. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
    doi:10.2528/PIER06021801

    14. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Trans. on Antennas and Propag., Vol. 50, No. 9, 1285-1290, 2002.
    doi:10.1109/TAP.2002.800699

    15. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement," IET Microwaves, Antennas Propag., Vol. 1, No. 1, 248-254, 2007.
    doi:10.1049/iet-map:20050318

    16. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
    doi:10.2528/PIER04070701

    17. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2998-3005, 2011.
    doi:10.1109/TAP.2011.2158779

    18. Chang, T. K., R. J. Langley, and E. A. Parker, "Active frequency-selective surfaces," IEE Proceedings -- Microwaves, Antennas and Propagation, Vol. 143, No. 1, 62-66, 1996.
    doi:10.1109/TAP.2009.2037772

    19. Kiani, G. I., K. L.Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Trans. on Antennas and Propag., Vol. 58, No. 2, 581-584, 2010.
    doi:10.1049/el:19940823

    20. Chang, K., J. Langley, and E. Parker, "Frequency selective surfaces on biased ferrite substrates," Electron. Lett., Vol. 30, No. 5, 1193-1194, 1994.
    doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

    21. Zhang, J.-C., Y.-Z. Yin, and R. Yi, "Resonant characteristics of frequency selective surfaces on ferrite substrates," Progress In Electromagnetics Research, Vol. 95, 355-364, 2009.
    doi:10.2528/PIER09072702

    22. Lima, A. C., E. A. Parker, and R. J. Langley, "Tunable frequency selective surface using liquid substrates," Electron. Lett., Vol. 30, 281, 1994.

    23. Simms, R. J. T., R. Dickie, R. Cahill, N. Mitchell, H. Gamble, and V. Fusco, "Measurement of electromagnetic properties of liquid crystals at 300 GHz using a tunable FSS," 31st ESA Workshop on Antennas for Space Applications, European Space Agency, Holland, Oct. 2010.
    doi:10.1109/JMEMS.2005.863704

    24. Zendejas, J. M., J. P. Gianvittorio, Y. Rahmat-Samii, and J. W. Judy, "Magnetic MEMS reconfigurable frequency-selective surfaces," J. Microelectromech. Syst., Vol. 15, No. 3, 613-623, 2006.
    doi:10.1049/el:20057774

    25. Martynyuk, A. E., J. I. Martinez-Lopez, and N. A. Martynyuk, "Active frequency selective surfaces based on loaded ring slot resonators," Electron. Lett., Vol. 41, No. 1, 2-4, 2005.
    doi:10.1002/jnm.681

    26. Malyuskin, O., V. F. Fusco, and A. G. Schuchinsky, "Modelling of impedance loaded wire frequency selective surfaces with tunable reflection and transmission characteristics," International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, Vol. 21, No. 6, 439-453, 2008.
    doi:10.1109/TAP.2011.2152312

    27. Sanz-Izquierdo, B., E. A. Parker, and J. C. Batchelor, "Switchable frequency selective slot arrays," IEEE Trans. on Antennas and Propag., Vol. 59, No. 7, 2728-2731, 2011.
    doi:10.1109/TAP.2011.2152312

    28., Mias C., "Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids," IEEE Microw. Wireless Compon. Lett., Vol. 15, 570-572, 2005.
    doi:10.2528/PIERL11111810

    29. Durbin, J. L. and M. A. Saed, "Tunable filtenna using varactor tuned rings FED with an ultra wideband antenna," Progress In Electromagnetics Research Letters, Vol. 29, 43-50, 2012.
    doi:10.1109/LAWP.2008.2006070

    30. Costa, F., A. Monorchio, S. Talrico, and F. M. Valeri, "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas Wireless Propag. Lett., Vol. 7, 676-680, 2008.
    doi:10.1109/TMTT.2004.837148

    31. Schoenlinner, B., A. Abbaspour-Tamijani, L. C. Kempel, and G. M. Rebeiz, "Switchable low-loss RF MEMS ka-band frequency-selective surface," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 11, 2474-2481, 2004.
    doi:10.1109/TMTT.2008.925575

    32. Coutts, G. M., R. R. Mansour, and S. K. Chaudhuri, "Mi-croelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 7, 1737-1746, 2008.
    doi:10.2528/PIER10101201

    33. Radi, Y., S. Nikmehr, and A. Poorziad, "A novel bandwidth enhancement technique for x-band RF Mems actuated recon-figurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
    doi:10.2528/PIER09112506

    34. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing mems-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
    doi:10.1049/el:19810430

    35. Parker, E. A. and S. M. A. Hamdy, "Rings as elements for frequency selective surfaces," Electron. Lett., Vol. 17, No. 17, 612-614, Aug. 20, 1981.
    doi:10.1049/el:20010217

    36. Martynyuk, A. E. and J. I. Martinez-Lopez, "Frequency-selective surfaces based on shorted ring slots," Electron. Lett., Vol. 37, No. 5, 268-269, Mar. 1, 2001.
    doi:10.1109/TAP.2011.2161555

    37. Taylor, P. S., E. A. Parker, and J. C. Batchelor, "An active annular ring frequency selective surface," IEEE Trans. on Antennas and Propag., Vol. 59, No. 9, 3265-3271, 2011.
    doi:10.2528/PIERB08031214

    38. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective surfaces," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
    doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

    39. Taylor, P. S., J. C. Batchelor, and E.A. Parker, "Dual-band FSS design using LC traps," Antennas and Propagation Conference (LAPC), 405-408, Loughborough, Nov. 8-9, 2010.
    doi:10.1049/el:19910155

    40. Kondo, A., "Design and characteristics of ring-slot type FSS," Electron. Lett., Vol. 27, No. 3, 240-241, 1991.
    doi:10.1163/156939387X00018

    41. Harrington, R. F., "The method of moments in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 1, No. 3, 181-200, 1987.
    doi:10.1163/156939387X00018

    42. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, Wiley-Interscience, New York, 1972.
    doi:10.1109/TMTT.1970.1127298

    43. Chen, C.-C., "Transmission through a conducting screen perforated periodically with apertures," IEEE Trans. on Microw. Theory and Tech., Vol. 18, No. 9, 627-632, 1970.
    doi:10.1109/22.841874

    44. Vendik I, B., O. G. Vendik, and E. L. Kollberg, "Commutation quality factor of two-state switchable devices," IEEE Trans. on Microw. Theory and Tech., Vol. 48, No. 5, 802-808, May 2000.
    doi:10.1049/el.2010.3265

    45. Martynyuk, A. E., A. G. Martinez-Lopez, and J. Rodriguez-Cuevas, "Spiraphase-type element with optimal transformation of switch impedances," Electron. Lett., Vol. 46, No. 10, 673-675, 2010.
    doi:10.1109/TMTT.2006.886163

    46. Martynyuk, A. E., A. G. Martinez-Lopez, and J. I. Martinez-Lopez, "2 bit X-band reflective waveguide phase shifter with BCB based bias circuits," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 12, 4056-4061, 2006.
    doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.