Vol. 128
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-02
Application of a Useful Uncertainty Analysis as a Metric Tool for Assessing the Performance of Electromagnetic Properties Retrieval Methods of Bianisotropic Metamaterials
By
Progress In Electromagnetics Research, Vol. 128, 365-380, 2012
Abstract
We applied a useful uncertainty model, ignored in most metamaterials retrieval studies, to monitor the accuracy of retrieved electromagnetic properties of bianisotropic metamaterial (MM) slabs composed of split-ring resonators and cut wires. Two different MM slab structures are considered to make the analysis complete. As uncertaintymaking factors, we took into consideration of uncertainties in scattering (S-) parameters of bianisotropic MM slabs as well as the length of these slabs. The applied uncertainty model is based upon considering the effect of minute change (differential) in uncertainty factors on the retrieved electromagnetic properties of bianisotropic MM slabs. The significant results concluded from the analysis are: 1) any abrupt changes in the phase of S-parameters of bianisotropic MM slabs remarkably influence the retrieved electromagnetic properties; 2) any small-scale loss (i.e., the loss of the substrate) in the bianisotropic MM slabs improves the accuracy of the retrieved electromagnetic properties of these slabs; and 3) precise knowledge of bianisotropic MM slab lengths are required for correct analysis of exotic properties of these slabs. The presented uncertainty analysis can be utilized as a metric tool for evaluating various retrieval methods of MM slabs in the literature.
Citation
Ugur Cem Hasar, Joaquim Jose Barroso, Mehmet Ertugrul, Cumali Sabah, and Bulent Cavusoglu, "Application of a Useful Uncertainty Analysis as a Metric Tool for Assessing the Performance of Electromagnetic Properties Retrieval Methods of Bianisotropic Metamaterials," Progress In Electromagnetics Research, Vol. 128, 365-380, 2012.
doi:10.2528/PIER12040802
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys.Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Shelby, R. A., D. R. Smith, and S. Shultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

4. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604

5. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.

6. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

7. Jiang, Z. H., J. A. Bossard, X. Wang, and D. H. Werner, "Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm," J. Appl. Phys., Vol. 109, 013515, 2011.

8. Collin, R. E., Field Theory of Guided Waves, Wiley-IEEE Press, 1990.
doi:10.1109/9780470544648

9. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukolis, "Effective medium theory of left-handed materials," Phys. Rev. Lett., Vol. 93, 107402, 2004.

10. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffcients," Phys. Rev. B, Vol. 65, 195104, 2002.

11. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coeffcients," Phys. Rev. E, Vol. 79, 026610, 2009.

12. Smith, D. R., D. C. Vier, T. Koschhy, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617,2005.

13. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E, Vol. 71, 046610,2005.

14. Hasar, U. C. and J. J. Barroso, "Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011.

15. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B, Vol. 65, 144440, 2002.

16. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.
doi:10.1063/1.1695439

17. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153, 2011.

18. Lubrowski, G., R. Schuhmann, and T. Weiland, "Extraction of effective metamaterial parameters by parameter fitting of dispersive models," Microw. Opt. Technol. Lett., Vol. 49, 285-288, 2007.
doi:10.1002/mop.22105

19. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Opt. Express, Vol. 11, 649-661, 2003.
doi:10.1364/OE.11.000649

20. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

21. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.

22. Andryieuski, A., R. Malureanu, and A. V. Lavrinenko, "Wave propagation retrieval method for chiral metamaterials," Opt. Express, Vol. 18, No. 15, 15498-15503, 2010.
doi:10.1364/OE.18.015498

23. Andryieuski, A., C. Menzel, C. Rockstuhl, R. Malureanu,F. Lederer, and A. Lavrinenko, "Homogenization of resonant chiral metamaterials," Phys. Rev. B, Vol. 82, 235107, 2010.

24. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

25. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

26. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

27. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, 52-57, 1997.
doi:10.1109/22.552032

28. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

29. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1563-1574, 2010.
doi:10.1163/156939310792149759

30. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 2257-2267, 2009.
doi:10.1109/TMTT.2009.2027160

31. Hasar, U. C. and Y. Kaya, "Reference-independent microwave method for constitutive parameters determination of liquid materials from measured scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1708-1717, 2011.
doi:10.1163/156939311797164756

32. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

33. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, 1946-1951, 2003.
doi:10.1109/TMTT.2003.815274

34. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, 114703,2009.

35. Buyukozturk, O., T.-Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004

36. Szabo, Z., G.-H. Park, R. Hedge, and E.-P. Li, "Unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

37. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from re°ection and transmitted fields by enforcing causality," IEEE Trans. Microw. Theory Tech., Vol. 55, 2224-2230, 2007.
doi:10.1109/TMTT.2007.906473

38. Barroso, J. J. and U. C. Hasar, "Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods," Int. J. Infrared Milli. Waves, Vol. 32, 857-866, 2011.

39. Weiland, T., R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, "Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments," J. Appl. Phys., Vol. 90, 5419-5424, 2001.
doi:10.1063/1.1410881

40. Lubkowski, G., B. Bandlow, R. Schuhmann, and T. Weiland, "Effective modeling of double negative metamaterial macrostructures," IEEE Trans. Microw. Theory Tech., Vol. 57, 1136-1146, 2009.
doi:10.1109/TMTT.2009.2017349

41. Kline, S. J. and F. A. McClintock, "Describing uncertainties in single-sample experiments," Mech. Eng., Vol. 75, 3, 1953.

42. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,", Tech. Note 1355, NIST, Boulder, CO, 1992.