Vol. 128

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-05-29

Constrained Trilinear Decomposition with Application to Array Signal Processing

By Xu Liu, Ting Jiang, Longxiang Yang, and Hong-Bo Zhu
Progress In Electromagnetics Research, Vol. 128, 195-214, 2012
doi:10.2528/PIER12031410

Abstract

This paper links the constrained trilinear tensor model into array signal processing. The structure properties of baseband signal, such as the Constant-Modulus (CM) and Finite Alphabet (FA) structures which are already known in the receiving array, are exploited in trilinear decomposition. Two novel algorithms for constrained trilinear decomposition are proposed and applied to array signal processing. The distinguishing features of the proposed model and algorithms compared to the traditional trilinear signal processing methods are: (i)~the proposed model has a better performance and lower computation complexity. (ii)~it can still work well even if degeneracy of factors are involved in the data model, which is not valid in traditional algorithms. Simulation results are presented to illustrate the application of the constrained trilinear decomposition to array signal processing and evaluate the performance of the proposed algorithms in DOAs estimation.

Citation


Xu Liu, Ting Jiang, Longxiang Yang, and Hong-Bo Zhu, "Constrained Trilinear Decomposition with Application to Array Signal Processing," Progress In Electromagnetics Research, Vol. 128, 195-214, 2012.
doi:10.2528/PIER12031410
http://jpier.org/PIER/pier.php?paper=12031410

References


    1. Krim, H. and M. Viberg, "Two decades of array signal processing research: the parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, 1996.
    doi:10.1109/79.526899

    2. Zhang, X., X. Gao, and W. Chen, "Improved blind 2D-direction of arrival estimation with L-shaped array using shift invariance property," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 593-606, 2009.
    doi:10.1163/156939309788019859

    3. Liang, J. and D. Liu, "Two L-Shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

    4. Liang, J., D. Liu, X. Zeng, W. Wang, J. Zhang, and H. Chen, "Joint azimuth-elevation/(-range) estimation of mixed nearfield and far-field sources using two-stage separated steering vector-based algorithm," Progress In Electromagnetics Research, Vol. 113, 17-46, 2011.

    5. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
    doi:10.2528/PIER11052205

    6. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with subarray divided technique and interpolated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
    doi:10.2528/PIER10011904

    7. Lee, J.-H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

    8. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

    9. Sidiropoulos, N. D., R. Bro, and G. B. Giannakis, "Parallel factor analysis in sensor array processing," IEEE Transactions on Signal Processing, Vol. 48, 2377-2388, 2000.
    doi:10.1109/78.852018

    10. Zhang, X., X. Gao, and Z. Wang, "Blind PARALIND multiuser detection for smart antenna CDMA system over multipath fading channel," Progress In Electromagnetics Research, Vol. 89, 23-38, 2009.
    doi:10.2528/PIER08112903

    11. Zhang, X., D. Wang, and D. Xu, "Novel blind joint direction of arrival and frequency estimation for uniform linear array," Progress In Electromagnetics Research, Vol. 86, 199-215, 2008.
    doi:10.2528/PIER08091205

    12. Kruskal, J. B., "Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics," Linear Algebra Applicat., Vol. 18, 95-138, 1977.
    doi:10.1016/0024-3795(77)90069-6

    13. Sidiropoulos, N. D., G. B. Giannakis, and R. Bro, "Blind PARAFAC receivers for DS-CDMA systems," IEEE Transactions on Signal Processing, Vol. 48, No. 3, 810-823, 2000.
    doi:10.1109/78.824675

    14. Zhang, X. and D. Xu, "Deterministic blind beamforming for electromagnetic vector sensor array," Progress In Electromagnetics Research, No. 84, 363-377, 2008.
    doi:10.2528/PIER08080402

    15. Liu, X. and N. D. Sidiropoulos, "Parafac methods for blind beamforming: Multilinear ALS performance and CRB," IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, 3128-3131, 2000.

    16. Shi, Y. and X. Zhang, "Quadrilinear decomposition-based blind signal detection for polarization sensitive uniform square array," Progress In Electromagnetics Research, Vol. 87, 263-278, 2008.
    doi:10.2528/PIER08102005

    17. Zhang, X., D. Wang, and D. Xu, "Novel blind joint direction of arrival and polarization estimation for polarization-sensitive uniform circular array," Progress In Electromagnetics Research, Vol. 86, 19-37, 2008.
    doi:10.2528/PIER08082302

    18. Gong, X. F., Z. W. Liu, and Y. G. Xu, "Regularised parallel factor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor," IET Signal Processing, Vol. 5, No. 4, 390-396, 2011.
    doi:10.1049/iet-spr.2009.0221

    19. Zhang, X., Z. Xu, L. Xu, and D. Xu, "Trilinear decompositionbased transmit angle and receive angle estimation for multipleinput multiple-output radar," IET Radar, Sonar & Navigation, Vol. 5, No. 6, 626-631, 2011.
    doi:10.1049/iet-rsn.2010.0265

    20. Nion, D. and N. D. Sidiropoulos, "Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2299-2310, 2009.
    doi:10.1109/TSP.2009.2016885

    21. Tomasi, G. and R. Bro, "A comparison of algorithms for fitting the PARAFAC model," Computational Statistics & Data Analysis, Vol. 50, 1700-1734, 2006.
    doi:10.1016/j.csda.2004.11.013

    22. Sergiy, A., R. Yue, N. D. Sidiropoulos, and A. B. Gershman, "Robust iterative fitting of multilinear models," IEEE Transactions on Signal Processing, Vol. 53, No. 8, 2678-2689, 2005.
    doi:10.1109/TSP.2005.850343

    23. Li, W.-X., Y.-P. Li, and W.-H. Yu, "On adaptive beamforming for coherent interference suppression via virtual antenna array," Progress In Electromagnetics Research, Vol. 125, 165-184, 2012.
    doi:10.2528/PIER12010802

    24. Park, G. M., H. G. Lee, and S. Y. Hong, "DOA resolution enhancement of coherent signals via spatial averaging of virtually expanded arrays," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 61-70, 2010.
    doi:10.1163/156939310790322127

    25. Zhang, X., J. Yu, G. Feng, and D. Xu, "Blind direction of arrival estimation of coherent sources using multi-invariance property," Progress In Electromagnetics Research, Vol. 88, 181-195, 2008.
    doi:10.2528/PIER08110101

    26. Bro, R. and C. A. Anderddon, "Improving the speed of multiway algorithms Part II: Compression," Chemometrics and Intelligent Laboratory Systems, Vol. 42, 105-113, 1998.
    doi:10.1016/S0169-7439(98)00011-2

    27. Bro, R., "Multi-way analysis in the food industry: Models,algorithms, and applications,", Ph.D. Thesis, University of Amsterdam, Amsterdam, 1998.
    doi:10.1016/S0169-7439(98)00011-2

    28. Rajih, M., P. Comon, and R. A. Harshman, "Enhanced line search: A novel method to accelerate PARAFAC," SIAM Journal on Matrix Analysis and Applications, Vol. 30, No. 3, 1128-1147, 2008.
    doi:10.1137/06065577

    29. Nion, D. and L. D. Lathauwer, "An enhanced line search scheme for complex-valued tensor decompositions application in DSCDMA," Signal Processing, Vol. 88, 749-755, 2008.
    doi:10.1016/j.sigpro.2007.07.024

    30. Bro, R., "PARAFAC. Tutorial and applications," Chemometrics and Intelligent Laboratory Systems, Vol. 38, 149-171, 1997.
    doi:10.1016/S0169-7439(97)00032-4

    31. Bro, R., et al., "Modeling multi-way data with linearly dependent loadings," Journal of Chemometrics, Vol. 23, No. 7-8, 324-340, 2009.
    doi:10.1002/cem.1206

    32. Richard, A. H. and E. L. Margaret, "PARAFAC: Parallel factor analysis," Computational Statistics & Data Analysis, Vol. 18, 39-72, 1994.

    33. Van der Veen, A. J., S. Talwar, and A. Paulraj, "Blind identification of FIR channels carrying multiple finite alphabet signals," International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, 1213-1216, 1995.

    34. Manioudakis, S., "Blind estimation of space-time coded systems using the finite alphabet-constant modulus algorithm," IEE Proc.--Vis. Image Signal Process., Vol. 153, No. 5, 549-556, 2006.
    doi:10.1049/ip-vis:20050155

    35. Bro, R. and N. D. Sidropoulos, "Least squares algorithms under unimodality and nonnegativity constraints," J. Chemometr., Vol. 12, 223-247, 1998.
    doi:10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.0.CO;2-2

    36. Swindlehurst, A. and T. Kailath, "Algorithms for azimuthelevation direction finding using regular array geometries," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 145-156, 1993.
    doi:10.1109/7.249120