Vol. 128

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-06-11

Scattering of Gaussian Beam by a Spheroidal Particle

By Xianming Sun, Haihua Wang, and Huayong Zhang
Progress In Electromagnetics Research, Vol. 128, 539-555, 2012
doi:10.2528/PIER12031409

Abstract

Gaussian beam scattering by a spheroidal particle is studied in detail. A theoretical procedure is given to expand an incident Gaussian beam in terms of spheroidal vector wave functions within the generalized Lorenz-Mie theory framework. Exact analytic solutions are obtained for an arbitrarily oriented spheroid with non-confocal dielectric coating. Normalized differential scattering cross sections are shown and discussed for three different cases of a dielectric spheroid, spheroid with a spherical inclusion and coated spheroid.

Citation


Xianming Sun, Haihua Wang, and Huayong Zhang, "Scattering of Gaussian Beam by a Spheroidal Particle," Progress In Electromagnetics Research, Vol. 128, 539-555, 2012.
doi:10.2528/PIER12031409
http://jpier.org/PIER/pier.php?paper=12031409

References


    1. Gouesbet, G., B. Maheu, and G. Gréhan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation," J. Opt. Soc. Am. A, Vol. 5, 1427-1443, 1988.
    doi:10.1364/JOSAA.5.001427

    2. Hadad, Y. and T. Melamed, "Parameterization of the tilted Gaussian beam waveobjects," Progress In Electromagnetics Research, Vol. 102, 65-80, 2010.
    doi:10.2528/PIER09120405

    3. Li, Y. Q., Z.-S. Wu, and L. G. Wang, "Polarization characteristics of a partially coherent Gaussian Schell-model beam in slant atmospheric turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
    doi:10.2528/PIER11092201

    4. Klacka, J. and M. Kocifaj, "On the scattering of electromagnetic waves by a charged sphere," Progress In Electromagnetics Research, Vol. 109, 17-35, 2010.
    doi:10.2528/PIER10072708

    5. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the Mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.

    6. Han, Y. P. and Z. S. Wu, "Scattering of a spheroidal particle illuminated by a Gaussian beam," Appl. Opt., Vol. 40, 2501-2509, 2001.
    doi:10.1364/AO.40.002501

    7. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

    8. Jandieri, V., K. Yasumoto, and Y.-K. Cho, "Rigorous analysis of electromagnetic scattering by cylindrical EBG structures," Progress In Electromagnetics Research, Vol. 121, 317-342, 2011.
    doi:10.2528/PIER11090903

    9. Jin, Y., D. Gao, and L. Gao, "Plasmonic resonant light scattering by a cylinder with radial anisotropy," Progress In Electromagnetics Research, Vol. 106, 335-347, 2010.
    doi:10.2528/PIER10060601

    10. Raymond Ooi, C. H., "Near-field and particle size effects in coherent raman scattering," Progress In Electromagnetics Research, Vol. 117, 479-494, 2011.

    11. Jin, Y., D. Gao, and L. Gao, "Plasmonic resonant light scattering by a cylinder with radial anisotropy," Progress In Electromagnetics Research, Vol. 106, 335-347, 2010.
    doi:10.2528/PIER10060601

    12. Han, Y. P., L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, "Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz-Mie theory framework," Optics Communications, Vol. 231, 71-77, 2004.
    doi:10.1016/j.optcom.2003.12.024

    13. Xu, F., K. F. Ren, and X. Cai, "Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates," J. Opt. Soc. Am. A, Vol. 24, 109-118, 2007.
    doi:10.1364/JOSAA.24.000109

    14. Xu, F., K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, "Generalized Lorenz-Mie theory for an arbitrarily oriented,located, and shaped beam scattered by homogeneous spheroid," J. Opt. Soc. Am. A, Vol. 24, 119-131, 2007.
    doi:10.1364/JOSAA.24.000119

    15. Zhang, H. Y. and Y. P. Han, "Addition theorem for the spherical vector wave functions and its application to the beam shape coeffcients," J. Opt. Soc. Am. B, Vol. 11, 255-260, 2008.
    doi:10.1364/JOSAB.25.000255

    16. Carro, Ceballos, P. L., J. De Mingo Sanz, and P. G. Dúcar, "Radiation pattern synthesis for maximum mean effective gain with spherical wave expansions and particle swarm techniques," Progress In Electromagnetics Research, No. 103, 355-370, 2010.
    doi:10.2528/PIER10031808

    17. Zhang, H. Y. and Y. F. Sun, "Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model," J. Opt. Soc. Am. B., Vol. 27, 883-887, 2010.
    doi:10.1364/JOSAB.27.000883

    18. Han, Y., H. Zhang, and X. Sun, "Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries," Applied Physics B -- Lasers and Optics, Vol. 84, 485-492, 2006.
    doi:10.1007/s00340-006-2298-7

    19. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Chapter 4, Princeton University Press, Princeton, NJ, 1957.

    20. Davis, L. W., "Theory of electromagnetic beam," Phys. Rev. A, Vol. 19, 1177-1179, 1979.
    doi:10.1103/PhysRevA.19.1177

    21. Doicu, A. and T. Wriedt, "Computation of the beam-shape coeffcients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions," App. Opt., Vol. 36, 2971-2978, 1997.
    doi:10.1364/AO.36.002971

    22. Barton, J. P. and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam," J. Appl. Phys., Vol. 66, 2800-2802, 1989.
    doi:10.1063/1.344207

    23. Flammer, C., Spheroidal Wave Functions, Stanford University Press, Stanford, California, 1957.

    24. Asano, S. and G. Yamamoto, "Light scattering by a spheroid particle," Appl. Opt., Vol. 14, 29-49, 1975.

    25. Asano, S., "Light scattering properties of spheroidal particles," Appl. Opt., Vol. 18, 712-723, 1979.
    doi:10.1364/AO.18.000712

    26. Dalmas, J. and R. Deleuil, "Multiple scattering of electromagnetic waves from two prolate spheroids with perpendicular axes of revolution," Radio Science, Vol. 28, 105-119, 1993.
    doi:10.1029/92RS01777

    27. Li, L. W., M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, "Computations of spheroidal harmonics with complex arguments:A review with an algorithm," Physical Review E, Vol. 58, 6792-6806, 1998.
    doi:10.1103/PhysRevE.58.6792