Vol. 126
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-10
A Novel Architecture for Peer-to-Peer Interconnect in Millimeter-Wave Radio-Over -Fiber Access Networks
By
Progress In Electromagnetics Research, Vol. 126, 139-148, 2012
Abstract
A novel peer-to-peer (P2P) interconnection architecture in a 60-GHz millimeter-wave (mm-wave) radio-over-fiber (RoF) access network is proposed for the first time. In this scheme, the beating of the lightwaves for downlink and P2P transmissions at the photodiode (PD) can provide signal up-conversion for both signals. Phase noise and frequency instability between the two independent lightwaves can be eliminated by a self-heterodyned radio frequency (RF) receiver (envelope detector) located on the user terminal, which can also down-convert simultaneously the two mm-wave signals to their associated intermediate frequencies. No high-frequency clock sources or other high bandwidth devices are required for signal up/down-conversions. A proof-of-concept experimental demonstration has also been carried out. Error-free transmission of the 1-Gb/ signals is achieved over 50-km fiber (downlink) or 25-km fiber (P2P) plus 4-m air link.
Citation
Jie Liu, Liang Zhang, Shu-Hao Fan, Changjian Guo, Sailing He, and Gee-Kung Chang, "A Novel Architecture for Peer-to-Peer Interconnect in Millimeter-Wave Radio-Over -Fiber Access Networks," Progress In Electromagnetics Research, Vol. 126, 139-148, 2012.
doi:10.2528/PIER12012701
References

1. Ogawa, H., D. Polifko, and S. Banba, "Millimeter wave fiber optics systems for personal radio communication," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 12, 2285-2293, 1992.
doi:10.1109/22.179892

2. Jia, Z., J. Yu, G. Ellinas, and G.-K. Chang, "Key enabling technologies for optical-wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," J. Lightw. Technol., Vol. 25, No. 11, 3452-3471, 2007.
doi:10.1109/JLT.2007.909201

3. Nirmalathas, A., P. Gamage, C. Lim, D. Novak, and R. Waterhouse, "Digitized radio-over-fiber technologies for converged optical wireless access network," J. Lightw. Technol., Vol. 28, No. 16, 2366-2375, 2010.
doi:10.1109/JLT.2010.2051017

4. Fu, X., C. Cui, and S.-C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-860, 2010.
doi:10.1163/156939310791285236

5. Lu, H.-H., C.-Y. Li, C.-H. Lee, Y.-C. Hsiao, and H.-W. Chen, "Radio-over-fiber transport systems based on DFB LD with main and -1 side modes injection-locked technique," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604

6. Narayanan, S. R., D. Braun, J. Buford, R. S. Fish, A. D. Gelman, A. Kaplan, R. Khandelwal, E. Shim, and H. Yu, "Peer-to-peer streaming for networked consumer electronics," IEEE Communication Magazine, Vol. 45, No. 6, 124-131, 2007.
doi:10.1109/MCOM.2007.374436

7. Zheng, Z., J. Wang, and J. Wang, "A study of network throughput gain in optical-wireless (FiWi) networks subject to peer-to-peer communications," IEEE International Conference on Communications, 1-6, 2009.

8. Yang, B., X.-F. Jin, X.-M. Zhang, H. Chi, and S. L. Zheng, "Photonic generation of 60 GHz millimeter-wave by frequency quadrupling based on a mode-locking SOA fiber ring laser with a low modulation depth MZM ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1773-1782, 2010.

9. Bakhtafrooz, A., A. Borji, D. Busuioc, and S. Safavi-Naeini, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.
doi:10.2528/PIER10091706

10. Vegas Olmos, J. J., T. Kuri, T. Sono, K. Tamura, H. Toda, and K.-I. Kitayama, "Wireless and optical-integrated access network ith peer-to-peer connection capability ," IEEE Photon. Technol. Lett., Vol. 20, No. 3, 1127-1129, 2008.
doi:10.1109/LPT.2008.924657

11. Li, Y., J. Wang, C. Qiao, A. Gumaste, Y. Xu, and Y. Xu, "Integrated fiber-wireless (FiWi) access networks supporting inter-ONU communications," J. Lightw. Technol., Vol. 28, No. 5, 714-724, 2010.
doi:10.1109/JLT.2009.2038598

12. Shoji, Y., K. Hamaguchi, and H. Ogawa, "Millimeter-wave remote self-heterodyne system for extremely stable and low-cost broad-band signal transmission," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 6, 1458-1468, 2002.
doi:10.1109/TMTT.2002.1006406

13. Choi, C.-S., Y. Shoji, and H. Ogawa, "Millimeter-wave fiber-fed wireless access systems based on dense wavelength-division-multiplexing networks," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 232-241, 2008.
doi:10.1109/TMTT.2007.912219

14. Choi, C.-S. and Y. Shoji, "Third-order intermodulation distortion characteristics of millimeter-wave self-heterodyne transmission techniques," Asia-Paci¯c Microw. Conf., 343-347, 2006.

15. Wong, E. and C.-J. Chae, "CSMA/CD-based ethernet passive optical network with optical internetworking capability among users," IEEE Photon. Technol. Lett., Vol. 16, No. 9, 2195-2197, 2004.
doi:10.1109/LPT.2004.833047