Vol. 124
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-22
Detuning Study of Implantable Antennas Inside the Human Body
By
Progress In Electromagnetics Research, Vol. 124, 265-283, 2012
Abstract
This study quantifies the detuning and impedance mismatch of antennas implanted inside the human body. Maximum frequency shifts caused by variations in the electrical properties of body tissues and different anatomical distributions were derived. The results are relevant to the design of implantable antennas. They indicate the bandwidth enhancement and initial tuning necessary for correct functioning. The study was carried out using electromagnetic modeling based on the finite-difference time-domain method and high-resolution anatomical models. Four anatomical computer models of two adults and two children were used. The implanted antennas operated in the Medical Implant Communication Service band. The most important detuning and impedance mismatch was found for subcutaneous locations and in areas where a layer of fat tissue was present. The maximum frequency shift towards higher frequencies was 70 MHz. The frequency shift did not occur symmetrically around 403 MHz, but was shifted towards higher frequencies.
Citation
Neus Vidal, Sergio Curto, José Mª Lopez-Villegas, Javier Sieiro, and Francisco Manuel Ramos, "Detuning Study of Implantable Antennas Inside the Human Body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515
References

1. Receveur, R. A. M., F. W. Lindemans, and N. F. de Rooij, "Microsystem technologies for implantable applications," J. Micromech. Microeng., Vol. 17, 50-80, 2007.
doi:10.1088/0960-1317/17/5/R02

2. Furse, C. M., "Biomedical telemetry: Today's opportunities and challenges," IEEE Workshop on Antenna Technology Small Antennas and Novel Metamaterials, Santa Monica, California, USA, Mar. 2009.

3. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antennas for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, 2004.
doi:10.1109/TMTT.2004.831976

4. Johnson, J., Statistical analysis of detuning effects for implantable microstrip antennas, Ph.D. Thesis, University of Utah, 2007.

5. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1934-1943, 2004.
doi:10.1109/TMTT.2004.832018

6. Rahmat-Samii, Y. and J. Kim, Implanted Antennas in Medical Wireless Communications, Morgan & Claypool Publishers, 2006.

7. Kim, J. and Y. Rahmat-Sammii, "Planar inverted-F antennas on implantable medical devices: Meandered type versus spiral type," Microwave and Optical Technology Letters, Vol. 48, No. 3, 567-572, 2006.
doi:10.1002/mop.21409

8. Lee, C. M., T. C. Yo, C. H. Luo, C. H. Tu, and Y.-Z. Juang, "Compact broadband stacked implantable antenna for biotelemetry with medical devices," Electronics Letters, Vol. 43, No. 12, 2007.

9. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Dual-resonant P-shape with double L-strips PIFA for implantable biotelemetry," Electronics Letters, Vol. 44, No. 14, 2008.
doi:10.1049/el:20081235

10. Liu, W. C., F. M. Yeh, and M. Ghavami, "Minituarized implantable broadband antenna for biotelemetry communication," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2407-2409, 2008.
doi:10.1002/mop.23649

11. Yilmaz, T., T. Karacolak, and E. Topsakal, "Characterization and testing of a skin mimicking material for implantable antennas operating at ISM Band," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 418-420, 2008.
doi:10.1109/LAWP.2008.2001736

12. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, 2008.
doi:10.1109/TMTT.2008.919373

13. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693

14. Liu, W. C., S. H. Chen, and C. M. Wu, "Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices," Microwave and Optical Technology Letters, Vol. 51, No. 3, 755-757, 2009.
doi:10.1002/mop.24142

15. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry," Microwave and Optical Technology Letters, Vol. 51, No. 3, 749-752, 2009.
doi:10.1002/mop.24189

16. Vidal, N. and J. M. Lopez-Villegas, "Changes in electromagnetic field absorption in the presence of subcutaneous implanted devices: Minimizing increases in absorption," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 545-555, 2010.
doi:10.1109/TEMC.2010.2051332

17. Gemio, J., J. Parrón, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604

18. Tan, K. B., X. An, F. F. Fan, and C. H. Liang, "Design of wideband microstrip printed monopole antenna with defected ground plane," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 169-178, 2010.
doi:10.1163/156939310790735606

19. Kasabegoudar, V. G., "Low profile suspended microstrip antennas for wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1795-1806, 2011.
doi:10.1163/156939311797454033

20. Christ, A., W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen, B. Kiefer, P. Schmitt, H. P. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag, and N. Kuster, "The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, 23-38, 2010.
doi:10.1088/0031-9155/55/2/N01

21. FCC guidelines for evaluating the environmental effects of radio frequency radiation, FCC, Washington, DC, 1996.

22. "Medical Implant Communications Service (MICS) federal register," Rules and Regulations, Vol. 64, No. 240, 69926-69934, 1999.

23. Neihart, N. M. and R. R. Harrison, "Micropower circuits for bidirectional wireless telemetry in neural recording applications," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 11, 1950-1959, 2005.
doi:10.1109/TBME.2005.856247

24. Chow, E. Y., A. L. Chlebowski, and P. P. Irazoqui, "A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor," IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, No. 6, 340-349, 2010.
doi:10.1109/TBCAS.2010.2081364

25. Chow, E. Y., A. L. Chlebowski, S. Chakraborty, W. J. Chappell, and P. P. Irazoqui, "Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 6, 1487-1496, 2010.
doi:10.1109/TBME.2010.2041058

26. Gao, Y., Y. Zheng, S. Diao, W. D. Toh, C. W. Ang, M. Je, and C. H. Heng, "Low-power ultrawideband wireless telemetry transceiver for medical sensor applications," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 3, 768-722, 2010.

27. Crescini, D., E. Sardini, and M. Serpelloni, "Design and test of an autonomous sensor for force measurements in human knee implants," Sensors and Actuators, Vol. 166, 1-8, 2011.

28. Noroozi, Z. and F. Hojjat-Kashani, "Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113

29. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1667-1677, 2011.
doi:10.1163/156939311797164945

30. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100 mhz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005

31. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002

32. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

33. Sullivan, D. M., D. T. Borupa, and O. P. Gandhi, "Use of the finite-difference time-domain method in calculating EM absorption in human tissues," IEEE Transactions on Biomedical Engineering, Vol. 34, No. 2, 148-157, 1987.
doi:10.1109/TBME.1987.326039

34. SEMCAD X by SPEAG, www.semcad.com.

35. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, FCC, Washington, DC, 2001.

36. Smetana, W., B. Balluch, G. Stangl, E. Gaubitzer, M. Edetsberger, and G. Köhler, "A multi-sensor biological monitoring module built up in LTCC-technology," Microelectronic Engineering, Vol. 84, 1240-1243, 2007.
doi:10.1016/j.mee.2007.01.155

37. Bembnowicza, P., M. MaÃlodobra, W. Kubicki, P. Szczepan Ska, A. Gorecka-Drzazga, J. Dziuban, A. Jonkisz, A. Karpiewskab, T. Dobosz, and L. Golonk, "Preliminary studies on LTCC based PCR microreactor," Sensors and Actuators, Vol. 150, 715-721, 2010.
doi:10.1016/j.snb.2010.08.015