Vol. 124
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-21
Improved CRLH-TL with Arbitrary Characteristic Impedance and Its Application in Hybrid Ring Design
By
Progress In Electromagnetics Research, Vol. 124, 249-263, 2012
Abstract
An improved designable composite right/left-handed transmission line (CRLH-TL) is presented in this paper, whose operating frequency-band and transmission characteristics can be tuned, respectively, by three structure variables. The equivalent characteristic impedance is studied carefully, and CRLH-TLs with arbitrary characteristic impedances are obtained. Some useful empirical formulae are derived for engineering application. Then, a sample of 50-Ω CRLH-TL, which can be used directly as a wide-band filter, is fabricated with the center frequency of 2.8 GHz. The measured results show that a relative 3-dB bandwidth of 74.6% is achieved, in good agreement with the simulated results. Moreover, the phase-frequency responses of our proposed CRLH-TLs are discussed in detail. A novel hybrid ring is then proposed, where 70-Ω CRLH-TL is used. At the center frequency of 5.8 GHz, equal power dividing is achieved with return loss and isolation more than 20 dB and 30 dB, respectively. The sample is finally fabricated and good agreements among theoretical analysis, simulated results, and measured results are obtained.
Citation
Xianqi Lin, Peng Su, Yong Fan, and Zhong Bo Zhu, "Improved CRLH-TL with Arbitrary Characteristic Impedance and Its Application in Hybrid Ring Design," Progress In Electromagnetics Research, Vol. 124, 249-263, 2012.
doi:10.2528/PIER11112303
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, 2006.

2. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line Resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808

3. Chaudhary, G., Y. Jeong, and J. Lim, "A broad-bandwidth dual-band bandpass filter design using composite right/left handed transmission lines," Journal of Electromagnetic Waves and Appliactions, Vol. 25, No. 14--15, 218-2147, 2011.

4. Lin, X. Q., D. Bao, H. F. Ma, and T. J. Cui, "Novel composite phase-shifting transmission-line and its application in the design of antenna array," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 375-380, 2010.
doi:10.1109/TAP.2009.2037764

5. Shamaileh, K. A. A., A. M. Qaroot, and N. Dib, "Non-uniform transmission line transfromers and their application in the design of compact multi-band Bagley power dividers with harmonics suppression," Progress In Electromagnetics Research, Vol. 113, 269-284, 2011.

6. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.

7. Caloz, C. and T. Itoh, "Application of the transmission line theory of lefthanded (LH) materials to the realization of a microstrip `LH line'," IEEE AP-S Int. Symp., 412-415, San Antonio, TX, 2002.

8. Oliner, A. A., "A periodic-structure negative-refractive-index medium without resonant elements," IEEE AP-S/URSI Int. Symp. Dig., Vol. 41, San Antonio, TX, 2002.

9. Iyer, A. K. and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," IEEE MTT-S Int. Microwave Symp. Dig., 1067-1070, Seattle, WA, 2002.

10. Sajin, G. I., S. Simion, F. Craciunoiu, A. A. Muller, and A. C. Bunea, "CRLH CPW antenna on magnetically biased ferrite substrate," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 803-814, 2010.
doi:10.1163/156939310791036232

11. Keshavarz, R., M. Movahhedi, A. Hakimi, and A. Abdipour, "A novel broad bandwidth and compact backward coupler with high coupling-level," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2--3, 283-293, 2011.
doi:10.1163/156939311794362885

12. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2371-2382, 2010.
doi:10.1163/156939310793675808

13. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.

14. Lin, X. Q., H. F. Ma, D. Bao, and T. J. Cui, "Design and analysis of super-wide bandpass filters using a novel compact meta-structure," IEEE Trans. on Microw. Theory Tech., Vol. 55, No. 4, 747-753, 2007.
doi:10.1109/TMTT.2007.892811

15. Tsinghua University Microstrip Circuits, Post & Telecom Press, Beijing, 1976.

16. Pozar, D. M., Microwave Engineering, 3rd Ed., Willey, New York, 2003.