Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-14

Nondestructive Complex Permittivity and Permeability Extraction Using a Two-Layer Dual-Waveguide Probe Measurement Geometry

By Michael D. Seal, Milo Hyde IV, and Michael John Havrilla
Progress In Electromagnetics Research, Vol. 123, 123-142, 2012
doi:10.2528/PIER11111108

Abstract

A two-layer dual-waveguide probe measurement geometry is proposed to nondestructively measure the complex permittivity and permeability of planar materials. The new measurement structure consists of two rectangular waveguides attached to a PEC flange plate that is placed against the material under test, followed by a known material layer backed by a PEC. The purpose for this new measurement geometry is to improve the permittivity results obtained using the existing dual-waveguide probe geometries, namely, the PEC-backed and free-space-backed geometries, by permitting a larger electric field into the material under test and increasing the field coupling between the two rectangular waveguide apertures. The theoretical development of the technique is presented extending the existing single-layer PEC-backed method to the proposed two-layer dual-waveguide probe method. The new measurement structure is theoretically analyzed by replacing the waveguide apertures with equivalent magnetic currents as stipulated by Love's equivalence theorem. Making use of the magnetic-current-excited two-layer parallel-plate Green's function and enforcing the continuity of the transverse magnetic fields over the waveguide apertures results in a system of coupled magnetic field integral equations. These coupled magnetic field integral equations are then solved for the theoretical reflection and transmission coefficients using the Method of Moments. The desired complex permittivity and permeability of the material under test are found by minimizing the root-mean-square difference between the theoretical and measured reflection and transmission coefficients, i.e., numerical inversion. Last, experimental results utilizing the new two-layer technique are presented for two magnetic shielding materials and subsequently compared to the existing PEC-backed and free-space-backed dual-waveguide probe geometries.

Citation


Michael D. Seal, Milo Hyde IV, and Michael John Havrilla, "Nondestructive Complex Permittivity and Permeability Extraction Using a Two-Layer Dual-Waveguide Probe Measurement Geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108
http://jpier.org/PIER/pier.php?paper=11111108

References


    1. Mostafavi, M. and W. C. Lan, "Polynomial characterization of inhomogeneous media and their reconstruction using an open-ended waveguide," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 822-824, 1993.
    doi:10.1109/8.250467

    2. Sanadiki, B. and M. Mostafavi, "Inversion of inhomogeneous continuously varying dielectric profiles using open-ended waveguides," IEEE Trans. Antennas Propag., Vol. 39, No. 2, 158-163, 1991.
    doi:10.1109/8.68177

    3. Bois, K. J., A. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1131-1140, 1999.
    doi:10.1109/19.816127

    4. Ganchev, S. I., S. Bakhtiari, and R. Zoughi, "A novel numerical technique for dielectric measurement of generally lossy dielectrics," IEEE Trans. Instrum. Meas., Vol. 41, No. 3, 361-365, 1992.
    doi:10.1109/19.153329

    5. Folgerø, K. and T. Tjomsland, "Permittivity measurement of thin liquid layers using open-ended coaxial probes," Meas. Sci. Technol., Vol. 7, No. 8, 1164, 1996, Available: http://stacks.iop.org/0957-0233/7/i=8/a=012.
    doi:10.1088/0957-0233/7/8/012

    6. Wu, M., X. Yao, and L. Zhang, "An improved coaxial probe technique for measuring microwave permittivity of thin dielectric materials," Meas. Sci. Technol., Vol. 11, No. 11, 1617, 2000, Available: http://stacks.iop.org/0957-0233/11/i=11/a=311.
    doi:10.1088/0957-0233/11/11/311

    7. Wu, M., X. Yao, J. Zhai, and L. Zhang, "Determination of microwave complex permittivity of particulate materials," Meas. Sci. Technol., Vol. 12, No. 11, 1932, 2001.
    doi:10.1088/0957-0233/12/11/324

    8. Shin, D. H. and H. J. Eom, "Estimation of dielectric slab permittivity using a flared coaxial line," Radio Sci., Vol. 38, No. 2, 2003.
    doi:10.1029/2002RS002776

    9. Olmi, R., M. Bini, R. Nesti, G. Pelosi, and C. Riminesi, "Improvement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, 217-232, 2004.
    doi:10.1163/156939304323062103

    10. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 711-718, 1994.
    doi:10.1109/19.328897

    11. Li, C. L. and K. M. Chen, "Determination of electromagnetic properties of materials using flanged open-ended coaxial probe --- Full-wave analysis," IEEE Trans. Instrum. Meas., Vol. 44, No. 1, 19-27, 1995.
    doi:10.1109/19.368108

    12. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 7, 1081-1090, 1996.
    doi:10.1109/22.508641

    13. Tantot, O., M. Chatard-Moulin, and P. Guillon, "Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method," IEEE Trans. Instrum. Meas., Vol. 46, No. 2, 519-522, 1997.
    doi:10.1109/19.571900

    14. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, No. 5, 1084-1092, 1997.
    doi:10.1109/19.676717

    15. Yeh, C. Y. and R. Zoughi, "A novel microwave method for detection of long surface cracks in metals," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 719-725, 1994.
    doi:10.1109/19.328896

    16. Huber, C., H. Abiri, S. I. Ganchev, and R. Zoughi, "Modeling of surface hairline-crack detection in metals under coatings using an open-ended rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 11, 2049-2057, 1997.
    doi:10.1109/22.644234

    17. Nadakuduti, J., G. Chen, and R. Zoughi, "Semiempirical electromagnetic modeling of crack detection and sizing in cement-based materials using near-field microwave methods," IEEE Trans. Instrum. Meas., Vol. 55, No. 2, 588-597, 2006.
    doi:10.1109/TIM.2006.870132

    18. Mazlumi, F., S. H. H. Sadeghi, and R. Moini, "Interaction of an open-ended rectangular waveguide probe with an arbitrary-shape surface crack in a lossy conductor," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3706-3711, 2006.
    doi:10.1109/TMTT.2006.882879

    19. McClanahan, A., S. Kharkovsky, A. R. Maxon, R. Zoughi, and D. D. Palmer, "Depth evaluation of shallow surface cracks in metals using rectangular waveguides at millimeter-wave frequencies," IEEE Trans. Instrum. Meas., Vol. 59, No. 6, 1693-1704, 2010.
    doi:10.1109/TIM.2009.2027780

    20. Bao, J. Z., S. T. Lu, and W. D. Hurt, "Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 10, 1730-1741, 1997.
    doi:10.1109/22.641720

    21. Popovic, D., L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. C. Hagness, and J. H. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 5, 1713-1722, 2005.
    doi:10.1109/TMTT.2005.847111

    22. Chen, C. P., Z. Ma, T. Anada, and J.-P. Hsu, "Further study on two-thickness-method for simultaneous measurement of complex EM parameters based on open-ended coaxial probe," Proceedings of the European Microwave Conference, October 2005.

    23. Stewart, J. W. and M. J. Havrilla, "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2037-2052, 2006.
    doi:10.1163/156939306779322693

    24. Maode, N., S. Yong, Y. Jinkui, F. Chenpeng, and X. Deming, "An improved open-ended waveguide measurement technique on parameters εr and μr of high-loss materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 476-481, 1998.
    doi:10.1109/19.744194

    25. Dester, G. D., E. J. Rothwell, M. J. Havrilla, and M. W. Hyde IV, "Error analysis of a two-layer method for the electromagnetic characterization of conductor-backed absorbing material using an open-ended waveguide probe," Progress In Electromagnetics Research B, Vol. 26, 1-21, 2010.
    doi:10.2528/PIERB10080506

    26. Wang, S., M. Niu, and D. Xu, "A frequency-varying method for simultaneous measurement of complex permittivity and permeability with an open-ended coaxial probe," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2145-2147, 1998.
    doi:10.1109/22.739296

    27. Hyde, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
    doi:10.2528/PIER07102405

    28. Baker-Jarvis, J. and M. D. Janezic, "Analysis of a two-port flanged coaxial holder for shielding effectiveness and dielectric measurements of thin films and thin materials," IEEE Trans. Electromagn. Compat., Vol. 38, No. 1, 67-70, 1996.
    doi:10.1109/15.485697

    29. Hyde, M. W., J. W. Stewart, M. J. Havrilla, W. P. Baker, E. J. Rothwell, and D. P. Nyquist, "Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution," Radio Sci., Vol. 44, No. RS3013, 2009.

    30. Hyde, M. W., M. J. Havrilla, A. E. Bogle, and E. J. Rothwell, "Nondestructive material characterization of a free-space-backed magnetic material using a dual-waveguide probe," IEEE Trans. Antennas Propag., In Press, 2011, Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6058602&isnumber=4907023.

    31. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

    32. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.

    33. Harrington, R., Field Computation by Moment Methods, IEEE Press, New York, 1993.
    doi:10.1109/9780470544631

    34. Emerson & Cuming Microwave Products, Inc., "ECCOSORB®FGM Permittivity & Permeability Data,", 2007, Available: http://www.eccosorb.com/Collateral/Documents/English-US/Electrical%20Parameters/FGM%20Electrical%20Parameters.pdf..

    35. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "An extrapolation method for improving waveguide probe material characterization accuracy," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 5, 298-300, 2010.
    doi:10.1109/LMWC.2010.2045600

    36. Hyde, M. W. and M. J. Havrilla, "Electromagnetic characterization of two-layer dielectrics using two flanged rectangular waveguides," Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1648-1652, 2008.
    doi:10.1109/IMTC.2008.4547308

    37. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
    doi:10.1109/TIM.1970.4313932

    38. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
    doi:10.1109/PROC.1974.9382

    39. Madsen, K., H. B. Nielsen, and O. Tingleff, Methods for Nonlinear Least Squares Problems, Technical University of Denmark, 2004.

    40. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microwave Theory Tech., Vol. 27, No. 12, 987-993, 1979.
    doi:10.1109/TMTT.1979.1129778

    41. Hyde, M. W., M. J. Havrilla, and A. E. Bogle, "A novel and simple technique for measuring low-loss materials using the flanged-waveguide measurement geometry," Meas. Sci. Technol., Vol. 22, No. 8, 085704, 2011.
    doi:10.1088/0957-0233/22/8/085704

    42. Agilent Technologies, Inc., "Technical specifications Agilent Technologies PNA series network analyzers E8362B/C, E8363B/C, and E8364B/C,", 2008.