Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-11

Generalized Equivalent Cable Bundle Method for Modeling EMC Issues of Complex Cable Bundle Terminated in Arbitrary Loads

By Zhuo Li, Liang Liang Liu, and Chang Qing Gu
Progress In Electromagnetics Research, Vol. 123, 13-30, 2012
doi:10.2528/PIER11102601

Abstract

A generalized equivalent cable bundle method (GECBM) is presented for modeling electromagnetic (EM) compatibility issues of complex cable bundle terminated in arbitrary loads. By introducing a new grouping criterion, complex cable bundles terminated in arbitrary loads can be reasonably simplified through a generalized equivalence procedure. The reduced cable bundle model can be used for modeling electromagnetic immunity, emission and crosstalk problems. The complexity and the computation time for the complete cable bundle modeling has been significantly reduced and fairly good precision is maintained. Numerical simulations are given to validate the efficiency and advantages of the method.

Citation


Zhuo Li, Liang Liang Liu, and Chang Qing Gu, "Generalized Equivalent Cable Bundle Method for Modeling EMC Issues of Complex Cable Bundle Terminated in Arbitrary Loads," Progress In Electromagnetics Research, Vol. 123, 13-30, 2012.
doi:10.2528/PIER11102601
http://jpier.org/PIER/pier.php?paper=11102601

References


    1. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, New York, 1994.

    2. Paul, C. R., "Frquency response of multiconductor transmission lines illuminated by an electromagnetic field," IEEE Trans. on Electromagn. Compat., Vol. 18, No. 4, 183-190, Nov. 1976.
    doi:10.1109/TEMC.1976.303499

    3. Kami, Y. and R. Sato, "Transient response of a transmission line excited by an electromagnetic pulse," IEEE Trans. on Electromagn. Compat., No. 30, 457-462, Nov. 1988.

    4. Lin, D.-B., F.-N. Wu, W. S. Liu, C. K. Wang, and H.-Y. Shih, "Crosstalk and discontinuities reduction on multi-module memory bus by particle swarm optimization," Progress In Electromagnetics Research, Vol. 121, 53-74, 2011.
    doi:10.2528/PIER11080302

    5. Xie, H., J. Wang, D. Sun, R. Fan, and Y. Liu, "Spice simulation and experimental study of transmission lines with TVSs excited by EMP," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 401-411, 2010.
    doi:10.1163/156939310790735543

    6. Koo, S.-K., H.-S. Lee, and Y. B. Park, "Crosstalk reduction effect of asymmetric stub loaded lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8--9, 1156-1167, 2011.
    doi:10.1163/156939311795762204

    7. Andrieu, G., A. Reineix, X. Bunlon, J. P. Parmantier, L. Koné, and B. Démoulin, "Extension of the ``equivalent cable bundle method'' for modeling electromagnetic emissions of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 1, 108-118, Feb. 2009.
    doi:10.1109/TEMC.2008.2007803

    8. Orlandi, A. and C. R. Paul, "FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. on Electromagn. Compat., Vol. 38, No. 3, 388-399, Aug. 1996.
    doi:10.1109/15.536069

    9. Trakadas, P. T. and C. N. Capsalis, "Validation of a modified fdtd method on non-uniform transmission lines," Progress In Electromagnetics Research, Vol. 31, 311-329, 2001.
    doi:10.2528/PIER00071705

    10. Wang, J., W.-Y. Yin, J.-P. Fang, and Q.-F. Liu, "Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 106, 1-16, 2010.
    doi:10.2528/PIER10060708

    11. Hsu, C.-I. G., R. F. Harrington, K. A. Michalski, and D. Zheng, "Analysis of multiconductor transmission lines of arbitrary cross section in multilayered uniaxial media," IEEE Trans. on Microw. Theory and Tech., Vol. 41, No. 1, 70-78, Jan. 1993.
    doi:10.1109/22.210231

    12. Pantic, Z. and R. Mittra, "Quasi-TEM analysis of microwave transmission lines by the finite-element method," IEEE Trans. on Microw. Theory and Tech., Vol. 34, No. 11, 1096-1103, Nov. 1986.
    doi:10.1109/TMTT.1986.1133505

    13. Shamaileh, K. A. A., A. M. Qaroot, and N. I. Dib, "Non-uniform transmission line transformers and their application in the design of compact multi-band Bagley power dividers with harmonics suppression," Progress In Electromagnetics Research, Vol. 113, 269-284, 2011.

    14. Bagci, H., A. E. Yilmaz, Jian-Ming Jin, and E. Michielssen, "Fast and rigorous analysis of emc/emi phenomena on electrically large and complex cable-loaded structures," IEEE Trans. on Electromagn. Compat., Vol. 49, No. 2, 361-381, May 2007.
    doi:10.1109/TEMC.2007.897159

    15. Wu, M., D. G. Beetner, T. H. Hubing, H. X. Ke, and S. S. Sun, "Statistical prediction of ``reasonable worst-case'' crosstalk in cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 3, 842-851, Aug. 2009.
    doi:10.1109/TEMC.2009.2026740

    16. Andrieu, G., L. Koné, F. Bocquet, B. Démoulin, and J. P. Parmantier, "Multiconductor reduction technique for modeling common-mode currents on cable bundles at high frequency for automotive applications," IEEE Trans. on Electromagn. Compat., Vol. 50, No. 1, 175-184, Feb. 2008.
    doi:10.1109/TEMC.2007.911914

    17. Li, Z., Z. J. Shao, J. Ding, Z. Y. Niu, and C. Q. Gu, "Extension of the ``equivalent cable bundle method'' for modeling crosstalk of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 4, 1040-1049, Nov. 2011.
    doi:10.1109/TEMC.2011.2146258

    18. Andrieu, G., X. Bunlon, L. Koné, J. P. Parmantier, B. Démoulin, and A. Reineix, The `equivalent cable bundle method‘: an efficient multiconductor reduction technique to model industrial cable networks, New Trends and Developments in Automotive System Engineering, InTech, Jan. 2011.